Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
Theo bài ra ta có :
\(f\left(3\right)=a.3^2+3b+c=9a+3b+c\)
\(f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)
hay \(f\left(3\right).f\left(2\right)\ge0\)
\(\Leftrightarrow\left(9a+3b+c\right)\left(4a-2b+c\right)=0\)
Dấu ''='' xảy ra <=> \(a=b=c=0\)( thỏa mãn điều kiện )
\(f\left(3\right).f\left(-2\right)=\left(9a+3b+c\right)\left(4a-2b+c\right)\)
\(=\left[3\left(a+b\right)+6a+c\right]\left[-2\left(a+b\right)+6a+c\right]\)
\(=\left(6a+c\right)\left(6a+c\right)=\left(6a+c\right)^2\ge0\) (đpcm)
a+b+c = 0 => a+b=-c ; b+c=-a ; c+a=-b
=> (1+a/b).(1+b/c).(1+c/a) = a+b/b . b+c/c . c+a/a = -c/b . (-a)/c . (-b)/a = -abc/abc = -1
k mk nha
Ta có: P(-1).P(-2)=[a.(-1)2+b.(-1)+c].[a.(-2)2+b.(-2)+c]
=(a-b+c).(4a-2b+c)
=[(5a-4a)-(3b-2b)+(2c-c)].(4a-2b+c)
=(5a-4a-3b+2b+2c-c).(4a-2b+c)
=[(5a-3b+2c)-(4a-2b+c)].(4a-2b+c)
Vì 5a-3b+2c=0
=>P(-1).P(-2)=[0-(4a-2b+c)].(4a-2b+c)
=-(4a-2b+c).(2a-2b+c)
=-(4a-2b+c)2
Vì \(\left(4a-2b+c\right)^2\ge0\)
=>\(-\left(4a-2b+c\right)^2\le0\)
=>\(P\left(-1\right).P\left(-2\right)\le0\)
=>ĐPCM