K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: HB=HC=BC/2=8cm

=>AH=căn 10^2-8^2=6cm

c: Xét ΔABC có

AH là trung tuyến

G là trọng tâm

=>A,G,H thẳng hàng và AG=2/3AH=4cm

d: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>HD=HE

e: HD=HE

HE<HC

=>HD<HC

17 tháng 3 2020

Xét tam giác ABH và tam giác ACH

                    AB=AC(GT)

                    ^AHB=^AHC=90o

                    ^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)

=>  tam giác ABH = tam giác ACH

=> HB=HC ( 2c tứ)

có HB+HC=BC 

mà BC=8 cm

HB=HC

=> HB=HC=4cm

Xét tam giác ABH : ^H=90o

=> AB2+AH2+BH2(đ/lý pythagoras)

thay số ta có :

52=AH2+42

25-16=AH2

9=AH2

3=AH

c)Xét tam giác BDH và tam giác ECH

^BDH= ^ HEC =90o

BH=CH

^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)

=> tam giác BDH = tam giác ECH

=> DH=EH

=> HDE CÂN TẠI H (Đ/N)

d) qua tia đối của DH ; kẻ HK sao cho HK= DH

CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền)  => HK > HC

mà HD=HK 

=> HD>HC

Bài 3: 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Ta có: BH=CH(cmt)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3(cm)

c) Xét ΔDBH vuông tại D và ΔECH vuông tại E có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

27 tháng 6 2021

vẽ hình giúp mk nha

6 tháng 5 2016

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AH: chung

                                     AB=AC (gt)

=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)

  =>HB=HC (2 cạnh tương ứng)

b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)

Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)

                                                  52    = AH2 + 42

                                                                  AH2 = 52 - 42 = 25-16=9

                                                 AH=\(\sqrt{9}=3\)

c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)

Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:

                                        AH: chung

                                        góc BAH=góc CAH (cmt)

=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)

  =>HD=HE (2 cạnh tương ứng)

  =>tam giác DHE cân tại H

d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE

Mà HE=HD (cmt) => HC>HD

a: Xét ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

13 tháng 3 2020

A B C H D E

a, xét tam giác AHB và tam giác AHC có : AH chung

AB = AC do tam giác ABC cân tại A (gt)

^AHB = ^AHC = 90 

=> tam giác AHB = tam giác AHC (ch-cgv)

=> HB = HC (Đn)

b, HB = HC (câu a)

HB + HC = BC 

BC = 8 cm (gt)

=> HB = 4

Xét tam giác AHB vuông tại H => AH^2 + HB^2 = AB^2 (Pytago)

AB = 5cm (gt)

=> AH^2 = 5^2 - 4^2

=> AH = 3 do AH > 0 

c, xét tam giác BHD và tam giác CHE có : HB = HC (câu a)

^BDH = ^CEH = 90

^ABC = ^ACB do tam giác ABC cân tại A (gt)

=> tam giác BHD = tam giác CHE (ch-gn)

=> HD = HE (đn)

=> tam giác HDE cân tại H (đn)

b, tam giác BHD vuông tại D

=> DH < HB 

HB = HC (câu a)

=> HD < HC

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(gt)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(hai cạnh tương ứng)

b) Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

c) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABC cân tại A(cmt)

nên \(\widehat{B}=\widehat{C}\)(hai góc ở đáy)

Xét ΔDBH vuông tại D và ΔECH vuông tại E có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(cmt)Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

⇒HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

4 tháng 4 2021

Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá

a, Ta có : BH = HC = BC : 2

    =>    BH = HC = 8 : 2

    =>    BH = HC = 4 ( cm )

    => BH = HC

b, - Xét tam giác AHB vuông tại H có :

          AC= AH2 + HC2

=>     52  =   AH2  +   42

=>    25  = AH2  +  16

=> AH2 = 25 + 16

=> AH2 = 41

=> AH = 20,5 ( cm )

2 tháng 5 2015

Hình bạn tự vẽ nha !
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
   AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
   AH mũ 2 + 4 mũ 2    = 5 mũ 2 
   AH mũ 2 + 16           = 25
   AH mũ 2                  = 25 - 16
   AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm
c) Hình như bạn viết thiếu đề ròi 
d) Mình bó tay :P