K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2022

a) Xét tam giác ABC có:

\(DE//BC\Rightarrow\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (đồng vị)

Mà \(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)

\(\Rightarrow\widehat{ADE}=\widehat{AED}\) => Tam giác ADE cân tại A

b) Xét tam giác ABE và tam giác ACD có:

\(AB=AC\)(Tam giác ABC cân tại A)

\(\widehat{BAC}\) chung

\(AD=AE\) (Tam giác ADE cân tại A)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân tại A)

\(\Rightarrow\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tam giác OBC cân tại O

a) Xét ΔABC có

D∈AB(gt)

E∈AC(gt)

Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(Hệ quả của Định lí Ta lét)

\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

mà \(\dfrac{AB}{AC}=1\)(AB=AC)

nên \(\dfrac{AD}{AE}=1\)

hay AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

8 tháng 2 2022

Định Lý Py-ta-lét chứ 

13 tháng 1 2019

đề sai, đường thẳng song song với BC cắt AB và AC lần lượt ở B và E là sao ???? chẳng lẻ E trùng với C

13 tháng 1 2019

Tạm thời cho đường thẳng song song với BC cắ AB và AC lần lượt ở D và E thì bài toán giải như sau( tự vẽ hình nha)
a, Vì t/giác ABC cân tại A nên góc ABC=ACB
DE song song BC nên góc ADE= ABC ; AED=ACB mà ABC = ACB (cmt) => ADE=AED => tam giác ADE là tam giác cân.

b,vì ADE là tam giác cân nên AD=AE => BD=EC
Xét 2 tam giác BDC và tam giác EBC có
 BD=EC (cmt)
BC: cạnh chung
góc DBC=ECB
=> tam giác DBC= tam giác ECB( c-g-c)
=>góc DCB= góc EBC ( 2 góc tương ứng)
=> tam giác OBC là tam giác cân.

28 tháng 2 2020

b1 : 

DE // AB

=> góc ABC  = góc DEC (đồng vị)

 góc ABC = góc ACB do tam giác ABC cân tại A (gt)

=> góc DEC = góc ACB 

=> tam giác DEC cân tại D (dh)

b2:

a, tam giác ABC => góc A + góc B  + góc C = 180 (đl)

góc A = 80; góc B  = 50

=> góc C = 50

=> góc B = góc C

=> tam giác ABC cân tại A (dh)

b, DE // BC

=> góc EDA = góc ABC (slt)

     góc DEA = góc ECB (dlt)

góc ABC = góc ACB (Câu a)

=> góc EDA = góc DEA 

=> tam giác DEA cân tại A (dh)

15 tháng 3 2020

có hình ko bn

15 tháng 3 2020

Có hình ko bạn

Nhìn như này loạn quá

Với lại cái đề nó cũng dài quá nữa cơ

Nhìn muốn xỉu luôn ý.

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

27 tháng 1 2018

ta có tam giac ABC cân=>góc B=góc C . BÉ//D=>góc EBD= góc D1( so le trong ). Mà góc D=gốc FDC( đối đỉnh) <=>góc EBD=góc FDC .Mà góc B = góc C . Nên góc C=góc FDC. tam giác FCD cân tại F

27 tháng 1 2018

tam giác EBD nè : ta có góc BED=góc EDF( so le trong) , góc CFD= góc EDF (so le trong ) <=>  góc BED= góc EDF Nên: góc BED= góc CFD. và góc B= góc C . Nên góc EDB=góc FDC ( đ/l trong 1 tam giác ).Mà góc FDC=góc B. Nên góc B=góc EDB. Vậy tam giác EBD cân tại E