K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-50^0}{2}=65^0\)

Xét ΔABC có \(\widehat{ACB}>\widehat{BAC}\)

mà AB,BC là cạnh đối diện của các góc ACB,BAC

nên AB>BC

b: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

 

c: ta có: AB=AE

mà A nằm giữa B và E

nên A là trung điểm của BE

Xét ΔCBE có

CA là đường trung tuyến

\(CA=\dfrac{BE}{2}\)

Do đó: ΔCBE vuông tại C

=>CE\(\perp\)CB

mà AM\(\perp\)CB 

nên AM//CE

Ta có: ED\(\perp\)AM

AM//CE

Do đó; ED\(\perp\)EC

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

12 tháng 5 2016

A C B M I                       thanghoa

A,xét\(\Delta\)vuông ABC(góc A=90 độ):

      góc C+gócB=90*  (đl trong1 tg vuông)

    ^C         +  60* =90*

     ^C                  = 90*-60*

                 => ^C           =30*.

dựa vào đl góc đối diện với cạnh lớn hơn,có

       góc A>góc B>gócC   (90>60>30 độ)

=>     BC  >  AC   >AB

vậy AB<AC                 lát nữa mik làm tiếp nha,I'm helping my mom do houseworkthanghoa  

               

12 tháng 5 2016

cậu làm tiếp hộ mk vs

31 tháng 3 2016

A B C E N I D M O 1 2 2 1 2 3 1 3 1

a) ta có tam giác abc cân tại A suy ra B=C3

C3=C1(2 góc đđ) suy ra B=C1

xét 2 tam giác vuông MBD và NCE

B=C1(cmt)

BD=CE(gt)

D1=E=90 độ

suy ra tam giácMBD=NCE(g.c.g)

suy ra MD=NE

31 tháng 3 2016

b) theo câu a, ta có:MD=NE

I1=I2(2 góc đđ)

DMI=90-I1

ENI=90-I2

suy ra DMI=ENI
xét tam giác MDI và tam giác NIE

MD=NE( theo câu a)

DMI=ENI(cmt)

MDI=NEI=90

suy ra tam giác MDI=NIE(g.c.g)

suy ra IM=IN suy ra I là trung điểm của MN

3 tháng 1 2019

a. Tính số đo góc HAB 

Trong tam giác HAB vuông tại H, ta có

- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)

b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD

Xét tam giác DIA và tam giác HIA, có

- DI = HI (I là trung điểm DH)

- cạnh IA chung

- AD = AH (giả thiết)

=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)

Ta có AD = AH => tam giác ADH cân tại A

mà I là trung điểm DH

=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH

=> AI vuông góc HD(đpcm)

c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD

Xét tam giác ADK và tam giác AHK, có

- AD = AH (giả thiết)

- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)

- cạnh AK chung

=> tam giác ADK = tam giác AHK

=> góc ADK = góc AHK

mà AHK = 90 độ

=> góc ADK = 90 độ

Ta có góc ADK = 90 độ 

=> KD vuông góc AC

mà AB cũng vuông góc AC (do tam giác vuông tại A)

=> AB // KD 

27 tháng 2 2019

ai làm nhanh nhất tui tk

13 tháng 7 2020

a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)

=> DM=NE

b) Ta có

\(\Delta MDI\perp D\)=> DMI+MID=90 độ

\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ

mà MID=NEI đối đỉnh

=> DMI=ENI

\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)

=> IM=ỊN

=> BC cắt MN tại I là trung Điểm của MN

c) Gọi H là chân đường zuông góc kẻ từ A xuống BC

=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )

=> góc HAB= góc HAC

Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I

=> tam giác OAB= tam giác OAC (c-g-c)(1)

=> góc OBA = góc OCA ; OC=OB

tam giác OBM= tam giác OCN (c-g-c)

=> góc OBM=góc OCN (2)

từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC

=> O luôn cố đinhkj

=> DPCM

a: EC=12cm

b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có

BA=CA
góc BAD chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có

EB=DC

góc IBE=góc ICD

Do đó: ΔIBE=ΔICD

d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta co: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có MB=MC

nen M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng