K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD và ΔACB có

AB/AC=AD/AB

góc A chung

=>ΔABD đồng dạng với ΔACB

=>góc ABD=góc ACB

15 tháng 3 2018

A)\(\dfrac{AD}{AB}=\dfrac{4}{8}=0,5\)

\(\dfrac{AB}{AC}=\dfrac{8}{16}=0,5\)

=>\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\)

Xét ΔABD và ΔACB có:

\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\left(CMT\right)\)

GÓC A chung

=>ΔABD∼ΔACB (TH2)

lÀM ĐƯỢC THẾ NÀY THÔI

15 tháng 3 2018

cái này mình cũng biết. quan trọng mình hỏi câu b :)

Bài 2: 

a) Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)

Do đó: MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(gt)

nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

=>BD=ED
b: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Xét ΔDBF và ΔDEC có

DB=DE

góc DBF=góc DEC

BF=EC

=>ΔDBF=ΔDEC

d: AF=AC

DF=DC

=>AD là trung trực của CF

=>AD vuông góc CF

7 tháng 3 2021

A B C 10 20 D 5

Xét tam giác ABD và tam giác ACB ta có ; 

^BAD = ^BAC = 900 

\(\frac{AB}{AC}=\frac{AD}{AB}=\frac{10}{20}=\frac{5}{10}=\frac{1}{2}\)

Vậy tam giác ABD ~ tam giác ACB ( c.g.c )

=> ^ABD = ^ACB ( 2 góc tương ứng )

Xet ΔABD và ΔACB có

góc ABD=góc C

góc A chung

=>ΔABD đồng dạng với ΔACB

=>AD/AB=AB/AC

=>AB^2=AD*AC
=>AD*25=100

=>AD=4cm

=>CD=21cm

22 tháng 1 2019

\(BD=AB+AD=4+5=9\left(cm\right)\)

\(\Delta ABC\) và \(\Delta CBD\) có: 

        \(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)

          Góc B chung

\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)

b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)

c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)

b) Ta có: AD+DC=AC(D nằm giữa A và C)

nên DC=AC-AD=3-1=2(cm)

Ta có: DE=AD(gt)

mà AD=1cm(cmt)

nên DE=1cm

Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)

\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)

Xét ΔBDE và ΔCDB có 

\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)

\(\widehat{BDE}\) chung

Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)

a) Ta có: AD+DE+EC=AC

mà AD=DE=EC(gt)

nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=1+1=2\)

hay \(BD=\sqrt{2}cm\)

Vậy: \(BD=\sqrt{2}cm\)

a: Xét ΔABD và ΔACE có

AB/AC=AD/AE
góc A chung

Do đó: ΔABD\(\sim\)ΔACE

b: ta có: ΔABD\(\sim\)ΔACE

nên \(\dfrac{S_{ABD}}{S_{ACE}}=\left(\dfrac{AB}{AC}\right)^2=\left(\dfrac{5}{7}\right)^2=\dfrac{25}{49}\)