Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
a: Xét ΔAMB và ΔDMC có
AM=DM
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
c: Xét ΔCHD vuông tại H và ΔCHE vuông tại H có
CH chung
HD=HE
Do đó: ΔCHD=ΔCHE
a: Xét ΔAMB và ΔEMC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔAMB=ΔEMC
b: Ta có: ΔAMB=ΔEMC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
Ta có: AB//CE
AB\(\perp\)AC
Do đó: CE\(\perp\)AC
c: Xét ΔECA vuông tại C và ΔBAC vuông tại A có
EC=BA(ΔMCE=ΔMBA)
AC chung
Do đó: ΔECA=ΔBAC
=>EA=BC
mà EA=2AM
nên BC=2AM
Hướng dẫn:
a) Có: \(\Delta\)ABC vuông tại A và ^ACB = 40\(^o\)
=> ^ABC = 90\(^o\)- 40\(^o\)=50\(^o\)
b ) Xét \(\Delta\)AMB và \(\Delta\)EMC có: AM = ME ; BM = MC ( gt ) ; ^AMB = ^EMC ( đối đỉnh )
=> \(\Delta\)AMB = \(\Delta\)EMC
=> ^ABM = ^ECM => ^ABC = ^BCE => AB //EC
c) \(\Delta\)ABC vuông tại A có AM là trung tuyến
=> AM = BM= CM =ME
=> \(\Delta\)MEC cân tại M => ^MEC =^ MCE mà ^MEC = ^ECK ( so le trong ) và ^KEC + ^ECK = 90\(^o\)
=> ^^MCE + ^KEC = 90\(^o\)
Ta lại có: AB //EC => ^ECA = 90 \(^o\)=> ^BCA +^ BCE = 90\(^o\)=> ^BCA + ^MCE = 90\(^o\)
=> ^BCA = ^KEC
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b) ΔACE cân
Trả lời:
Xét ΔACH và ΔECH có :
AH = HE (gt)
AHCˆ=EHCˆ(=90o)
HC: chung
=> ΔACH=ΔECH (cạnh huyền-cạnh góc vuông)
=> CA= CE (2 cạnh tương ứng)
Xét ΔCAE có :
AC = CE (cmt)
=> ΔCAE cân tại C
~Học tốt!~
Xét tam giác AMB và tam giác DMC có:AM=MD(GT)
góc AMB=góc DMC(Đối đỉnh)
BM=MC(GT)
=>tam giác AMB=tam giác DMC(c.g.c)