Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMI và ΔCMB có
MA=MC
góc AMI=góc CMB
MI=MB
Do đó: ΔAMI=ΔCMB
b: Xét tứ giác ABCI có
M là trung điểm chung của AC và BI
nên ABCI là hình bình hành
Suy ra: AI//BC và AI=BC
Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
Suy ra: AK//BC và AK=BC
c: Ta có: AK//BC
AI//BC
Do đó: K,A,I thẳng hàng
mà AK=AI
nên A là trung điểm của KI
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABC có
AE/AB=AF/AC
Do đó: EF//BC
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
a) Xét ΔBCE và ΔFAE có
EB=EF(gt)
\(\widehat{BEC}=\widehat{FEA}\)(hai góc đối đỉnh)
EC=EA(gt)
Do đó: ΔBCE=ΔFAE(c-g-c)
b) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
mà D,B,C thẳng hàng(gt)
nên D là trung điểm của BC
Suy ra: \(DB=\dfrac{1}{2}BC\)
mà BC=AF(ΔBCE=ΔFAE)
nên \(DB=\dfrac{1}{2}AF\)(đpcm)
Vì E là trung điểm của AB
F là trung điểm của AC
=>EF là đường trung bình của △ABC
=> EF=1/2BC và EF//BC
Mình làm cách này mà sai rồi. Dù sao cũng cảm ơn nha!!!