Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADE có
M là trung điểm của AD
H là trung điểm của AE
Do đó: MH là đường trung bình của ΔADE
Suy ra: MH//DE
hay BC//DE
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
Suy ra: CA=CE
mà CA=BD
nên CE=BD
Xét tứ giác BCDE có DE//BC
nên BCDE là hình thang
mà CE=BD
nên BCDE là hình thang cân
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
A, Xét tứ giác ABCD có
MB=MC=1/2BC(M là trung điểm BC-gt)
MD=MA=1/2AD( M là trung điểm AD-gt)
mà AD cắt BC tại M
->ABCD là hbh
Ta có ABCD là hình bh ( cmt)
mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)
-> ABCD là hcn(Đpcm)
B, Gọi I là giao điêm của AB và EM
Ta có góc BIM=90 độ( do M đối E qua AB-gt)
góc BAC = 90 độ( tam giác ABC vuông tại A-gt)
mà hai góc vị trí đồng vị
-> IM song song AC
Xét tam giác BAC có
M là trung điểm BC(gt)
IM song song AC( cmt)
-> I là trung điểm AB
Ta có
IA=IB=1/2AB( I là trung điểm AB-cmt)
IE=IM=1/2EM(M đối E qua AB-gt)
mà EM cắt AB tại I
-> EAMB là hình bình hành
Mà AB vuông góc EM ( M đối E qua AB-gt)
-> EAMB là hình thoi( đpcm)
Xong rùi nha bn
a: Xét tứ giác ABMD có
O là trung điểm của AM
O là trung điểm của BD
Do đó: ABMD là hình bình hành
a: Xét tứ giác ABFC có
M là trung điểm của BC
M là trung điểm của FA
Do đó: ABFC là hình bình hành
a: Xét tứ giác ABFC có
M là trung điểm của BC
M là trung điểm của FA
Do đó: ABFC là hình bình hành
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật
\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)
\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)
Do đó BIDC là hình thang
Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI
Do đó \(\Delta ABI\) cân tại B
Suy ra BC là trung trực cũng là phân giác
Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)
Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)
Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)
Vậy BIDC là hình thang cân
a) Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Vì D đối xứng với M qua AB(gt)
nên AB là đường trung trực của DM
⇔AB vuông góc với DM tại trung điểm của DM
mà AB cắt DM tại H(gt)
nên H là trung điểm của DM và MH⊥AB tại H
Ta có: MH⊥AB(cmt)
AC⊥AB(ΔABC vuông tại A)
Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)
hay MD//AC
Ta có: H là trung điểm của MD(cmt)
nên \(MH=\dfrac{1}{2}\cdot MD\)(1)
Xét ΔABC có
M là trung điểm của BC(gt)
MH//AC(cmt)
Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
H là trung điểm của AB(cmt)
Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra AC=MD
Xét tứ giác ACMD có
AC//MD(cmt)
AC=MD(cmt)
Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)