K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2022

Sửa đề: Tia phân giác góc B cắt AC tại D. Tia phân giác góc C cắt AB tại E

a: Xét ΔABD và ΔACE có

góc ABD=góc ACE

AB=AC

góc A chung

Do đó: ΔABD=ΔACE
=>BD=CE

b: Xét ΔOEB và ΔODC có

góc EBO=góc DCO

EB=DC

góc OEB=góc ODC

DO đó: ΔEOB=ΔDOC

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó: ΔABO=ΔACO

=>góc BAO=góc CAO

=>AO là phân giác của tia phân giác của góc BAC

11 tháng 12 2016

Ta có hình vẽ:

A B C D E O

a/ Xét tam giác BEC và tam giác CDB có:

\(\widehat{BEC}\)=\(\widehat{CDB}\)=900 (GT)

BC: cạnh chung

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác BEC = tam giác CDB

(theo trường hợp cạnh huyền góc nhọn)

=> BD = CE (2 cạnh tương ứng)

b/ Ta có: BE = CD (vì tam giác BEC = tam giác CDB) (1)

\(\widehat{E}\)=\(\widehat{D}\) = 900 (2)

Ta có: \(\widehat{EOB}\)=\(\widehat{DOC}\) (đối đỉnh) (*)

\(\widehat{E}\)=\(\widehat{D}\)=900 (**)

Mà tổng 3 góc trong tam giác bằng 1800 (***)

Từ (*),(**),(***) => \(\widehat{EBO}\)=\(\widehat{DCO}\) (3)

Từ (1),(2),(3) => tam giác OEB = tam giác ODC

c/ Xét tam giác AEO và tam giác ADO có:

AO: cạnh chung

\(\begin{cases}AB=AC\left(GT\right)\\EB=DC\end{cases}\)\(\Rightarrow\)AE = AD

EO = DO (vì tam giác OEB = tam giác ODC)

Vậy tam giác AEO = tam giác ADO (c.c.c)

=> \(\widehat{EAO}\)=\(\widehat{DAO}\) (2 góc tương ứng)

=> AO là tia phân giác \(\widehat{BAC}\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì tam giác ABC cân tại A

\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)

b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:

\(\widehat{A}\) chung

AB = AC

\(\widehat {ABF} = \widehat {ACE}\)

\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )

\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)

\( \Rightarrow \Delta AEF\) cân tại A

c) Xét tam giác IBC có :

\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)

Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )

\( \Rightarrow IB = IC\)( cạnh tương ứng )

Vì EC = BF ( câu b) và IB = IC

\( \Rightarrow \) EC – IC = BF – BI

\( \Rightarrow \) EI = FI

\( \Rightarrow \Delta IEF\) cân tại I

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH