K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Chương II : Tam giác

31 tháng 12 2017

2) \(\Delta ACE\) cân

BÀI LÀM :

Xét \(\Delta ACH\)\(\Delta ECH\) có :

AH = HE (gt)

\(\widehat{AHC}=\widehat{EHC}\left(=90^o\right)\)

HC: chung

=> \(\Delta ACH\)=\(\Delta ECH\) (cạnh huyền-cạnh góc vuông)

=> CA= CE (2 cạnh tương ứng)

Xét \(\Delta CAE\) có :

AC = CE (cmt)

=> \(\Delta CAE\) cân tại C

13 tháng 3 2018

A D B C H M E

a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)

=> tam giác MDC = tam giác MAB

=> Góc CBA=góc BCD (Góc tương ứng)

Xét \(\Delta ABC\)\(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)

=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)

b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H

=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C

8 tháng 2 2018

a)  Ap dụng định lý Pytago vào tam giác vuông ABC ta có:

                \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(AC^2=BC^2-AB^2\)

\(\Leftrightarrow\)\(AC^2=10^2-8^2=36\)

\(\Leftrightarrow\)\(AC=\sqrt{36}=6\)

Vậy....

13 tháng 1 2019

1)  Tam giác ABC vuông tại A có AM là trung tuyến

=> AM = MB = MC = BC/2

=> tgiac MAC cân tại M   => góc MAC = góc MCA

Xét tgiac ABC và tgiac CDA có:

AC: cạnh chung

góc BCA = góc DAC

BC = AD  ( = 3AM)

suy ra: tgiac ABC = tgiac CDA (c.g.c)

=>  góc BAC = góc DCA = 900

hay CD vuông góc với AC

17 tháng 2 2018

a)Ap dụng định lý py ta go cho∆ABC vuông tại A ta có:

AB^2 + AC^2 = BC^2

8^2.   + AC^2 =10^2

              AC^2 = 36

            AC .     =6 cm

b-1)

Xet∆AMB = ∆DMC ( c-g-c )

=) Góc ABM = góc DCM

Ma ABM và DCM so le trong

Suy ra BA//DC

Lại có BA vuông góc vs AC

Suy ra DC vuông góc với AC

17 tháng 2 2018

b-2)

Xét ∆ACE có CH vuông góc với AE =) CH là đường cao

                                        Lại có: CH là trung tuyến ( AH=AE)

Suy ra ∆ACE cân tại C

b-3) xét tứ giác ACDB có M là trung điểm của AD

                                            M là trung điểm của BC

Suy ra tứ giác ACDB là hình bình hành

=) BD = AC (1)

Mà ∆ ACE cân tai C =) AC = CE (2)

Từ(1);(2) suy ra BD= CE

b-4)

Xét∆ AMH và∆ EMH có:

AH = HE

Góc AHM = góc EHM (=90°)

Chung MH

Suy ra: ∆AMH =∆EMH (c-g-c)

=) AM = AE

Mà AM = MD

Suy ra AM = AE = MD

Suy ra: ∆AED vuông tại E ( theo trung tuyêt canh huyền)

gCho tam giác Abc vuông tại A (AB>ACgCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .TÍNH ac biết ab=8 , bc=10cd vuông actam giác cae cânbd =ceae vuông edGọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .TÍNH ac biết ab=8...
Đọc tiếp

gCho tam giác Abc vuông tại A (AB>ACgCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông edGọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

Cho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông edCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông ed

ae vuông ed

0

b) ΔACE cân

Trả lời:

Xét ΔACH và ΔECH có :

AH = HE (gt)

AHCˆ=EHCˆ(=90o)

HC: chung

=> ΔACH=ΔECH (cạnh huyền-cạnh góc vuông)

=> CA= CE (2 cạnh tương ứng)

Xét ΔCAE có :

AC = CE (cmt)

=> ΔCAE cân tại C

                                       ~Học tốt!~

10 tháng 4 2020

1, Xét △ABC vuông tại A có: AC2 + AB2 = BC2 (định lý Pytago)

=> AC2 = BC2 - AB2 = 102 - 82 = 36

=> AC = 6 (cm)

2. Xét △AMB và △DMC 

Có: AM = MD (gt)

     AMB = DMC (2 góc đối đỉnh)

       MB = MC (gt)

=> △AMB = △DMC (c.g.c)

=> MAB = MDC (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DC (dhnb)

Mà AB ⊥ AC

=> CD ⊥ AC (từ vuông góc đến song song)

3. Xét △AHC và △EHC cùng vuông tại H

Có: CH là cạnh chung

       AH = EH (gt)

=> △AHC = △EHC (2cgv)

=> AC = EC (2 cạnh tương ứng)

=> △ACE cân tại C

4, Xét △CAM và △BDM

Có: AM = DM (gt)

    CMA = BMD (2 góc đối đỉnh)

      CM = MB (gt)

=> △CAM = △BDM (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Mà AC = CE (cmt)

=> BD = CE