Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEBC và ΔFCB có
EB=FC
góc EBC=góc FCB
BC chung
=>ΔEBC=ΔFCB
=>EC=FB
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔICB cân tại I
=>IB=IC
Xét ΔIBE và ΔICF có
IB=IC
IE=IF
BE=CF
=>ΔIBE=ΔICF
c: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
=>góc IAB=góc IAC
=>AI là phân giáccủa góc BAC
a.
Do F là điểm thuộc đường trung trực của EC nên FE=FC(1)
Mặt khác \(\Delta FAK=\Delta FAE\left(c.g.c\right)\) vì \(AB=AE,\widehat{BAF}=\widehat{EAF},FA\) là cạnh chung.
\(\Rightarrow FB=FE\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) thì theo tính chất bắc cầu ta có ĐPCM.
b.
Do \(AB=AE;\widehat{BAE}=90^0\Rightarrow\Delta BAE\) vuông cân tại A.
\(\Rightarrow\widehat{AEB}=45^0\Rightarrow\widehat{BEC}=135^0\)
Áp dụng định lý tổng 3 góc trong một tam giác,ta có:
\(\widehat{BEC}+\widehat{BCE}+\widehat{ECB}=180^0\)
\(\Rightarrow\widehat{EBC}=180^0-30^0-135^0=15^0\)
Hạ \(FK\perp AB\),FH là đường trung trực của AC.
Dễ thấy tứ giác KFHA là hình vuông nên FK=FH.
Xét \(\Delta FBK\) và \(\Delta FCH\) có:
\(FC=FB\)
\(FH=FK\)
\(\Rightarrow\Delta FBK=\Delta FCH\left(ch.cgv\right)\Rightarrow\widehat{KFB}=\widehat{HFC}\)
Mà \(\widehat{KFB}+\widehat{BFE}+\widehat{EFH}=90^0\)
\(\Rightarrow\widehat{HFC}+\widehat{BFE}+\widehat{EFH}=90^0\)
\(\Rightarrow\widehat{BFC}\) vuông cân tại F
\(\Rightarrow\widehat{CBF}=45^0\Rightarrow\widehat{EBF}=60^0\)
Tam giác FBE cân tại F có một góc bằng \(60^0\) nên tam giác đó là tam giác đều.
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )
a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có
AB=AE
AC chung
=>ΔABC=ΔAEC
b: Xet ΔCEB có
CA,BH là trung tuyến
CA cắt BH tại M
=>M là trọng tâm
=>CM=2/3*12=8cm
c: Xét ΔCBE có
A là trung điểm của BE
AK//CE
=>K la trung điểm của BC
=>E,M,K thẳng hàng
a)Ta có F thuộc tia trung trực của CE
=>FE=FC (1)
Xét tam giác BÀ và tam giác EAF có
BA=AE (GT)
góc BAF = góc EAF(À là tia phân gics của góc A)
AF là cạnh chung
Do đó tam giácBAF=tam giác EAF (c.g.c)
=>BF=EF( 2 cạnh tương ứng)(2)
Từ (1)và (2) suy ra FC=FB
Suy ra tam giác BFC cân tại F (đpcm)
sao ko cs câu b