K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=10^2-8^2=36\)

hay AB=6(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AB\cdot AC=AH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{36}{10}=3.6\left(cm\right)\\CH=\dfrac{64}{10}=6.4\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)

30 tháng 9 2018

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)

a: AC=căn 5^2-3^2=4cm

AH=3*4/5=2,4cm

BH=3^2/5=1,8cm

CH=5-1,8=3,2cm

b: \(BH=\sqrt{60^2:144}=5\left(cm\right)\)

BC=144+5=149cm

\(AB=\sqrt{5\cdot149}=\sqrt{745}\left(cm\right)\)

\(AC=\sqrt{144\cdot149}=12\sqrt{149}\left(cm\right)\)

c: \(HC=\sqrt{AC^2-AH^2}=\dfrac{144}{13}\left(cm\right)\)

\(BH=\dfrac{AH^2}{HC}=\dfrac{25}{13}cm\)

BC=BH+CH=13(cm)

AB=căn 13^2-12^2=5cm

11 tháng 7 2023

a

Áo dụng đl pytago vào tam giác ABC vuông tại A:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

\(CH=BC-BH=5-1,8=3,2\left(cm\right)\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b

Áp dụng đl pytago vào tam giác AHC vuông tại H có:

\(AC=\sqrt{AH^2+HC^2}=\sqrt{60^2+144^2}=156\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A, đường cao AH có:

\(AC^2=HC.BC\Rightarrow BC=\dfrac{AC^2}{HC}=\dfrac{156^2}{144}=169\left(cm\right)\)

\(BH=BC-HC=169-144=25\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow AB=\sqrt{25.169}=65\left(cm\right)\)

c

Áp dụng đl pytago vào tam giác AHC vuông tại H:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{12^2-\left(\dfrac{60}{13}\right)^2}=\dfrac{144}{13}\approx11,08\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC đường cao AH có:

\(AH^2=HB.HC\Rightarrow HB=\dfrac{AH^2}{HC}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\dfrac{144}{13}}=\dfrac{25}{13}\approx1,92\left(cm\right)\)

\(BC=HB+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)

\(AB^2=HB.BC\Rightarrow AB=\sqrt{HB.HC}=\sqrt{\dfrac{144}{13}.\dfrac{25}{13}}=\dfrac{60}{13}\approx4,62\left(cm\right)\)

ABCHÁp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :

AC2 = BC2 - AB2

AC2 = 52−32=3(AC>0)

Ta có : SABC=12AB.AC

Mà : SABC=12AH.BC

⇒ 12AB.AC=12AH.BC

⇔ AH = 

ACBH

a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881 

=> AB = 881

Lại có : BH.HC =  AH2

<=> HC.25 = 162

<=> HC.25 = 256

<=> HC = 256 : 25 = 10,24

Ta có : BC = HC + BH = 10,24 + 25 = 35,24 

Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576

=> AC = 

16 tháng 6 2017

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; BC = 5cm

b, AB = 15cm; AC = 20cm; AH = 12cm; BC = 25cm

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Bài 1:

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)

$CH=BC-BH=10-3,6=6,4$ (cm)

Tiếp tục áp dụng HTL: 

$AH^2=BH.CH=3,6.6,4$

$\Rightarrow AH=4,8$ (cm)

$AC^2=CH.BC=6,4.10=64$

$\Rightarrow AC=8$ (cm)

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)

$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)