Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
=> Luôn đúng
Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)
Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)
Đáp án đúng là: A
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 3\). Do đó dãy số (un) là một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{3}\) và công bội q = 3 nên ta có số hạng tổng quát là: \({u_n} = \frac{1}{3}{.3^{n - 1}} = {3^{n - 2}}\) với n ∈ ℕ*.
Do đó số hạng thứ năm của dãy số (un) là: \({u_5} = {3^{5 - 2}} = 27\).
a) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} > 1\).
b) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} < 2\).
Đáp án đúng là: D
Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).
Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)a + 2}}{{\left( {n + 1} \right) + 1}} = \frac{{na + a + 2}}{{n + 1 + 1}} = \frac{{na + a + 2}}{{n + 2}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{na + a + 2}}{{n + 2}} - \frac{{na + 2}}{{n + 1}} = \frac{{\left( {na + a + 2} \right)\left( {n + 1} \right) - \left( {na + 2} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {{n^2}a + na + 2n + na + a + 2} \right) - \left( {{n^2}a + 2n + 2na + 4} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2}a + na + 2n + na + a + 2 - {n^2}a - 2n - 2na - 4}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\end{array}\)
a) Để \(\left( {{u_n}} \right)\) là dãy số tăng thì:
\({u_{n + 1}} - {u_n} > 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0 \Leftrightarrow a - 2 > 0 \Leftrightarrow a > 2\)
b) Để \(\left( {{u_n}} \right)\) là dãy số giảm thì:
\({u_{n + 1}} - {u_n} < 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} < 0 \Leftrightarrow a - 2 < 0 \Leftrightarrow a < 2\)
a) \(\begin{array}{l}\lim {u_n} = \lim \left( {3 + \frac{1}{n}} \right) = \lim 3 + \lim \frac{1}{n} = 3 + 0 = 3\\\lim {v_n} = \lim \left( {5 - \frac{2}{{{n^2}}}} \right) = \lim 5 - \lim \frac{2}{{{n^2}}} = 5 - 0 = 5\end{array}\)
b)
\(\begin{array}{l}\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 5 = 8\\\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 5 = - 2\\\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.5 = 15\\\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}{u_n} \le 2 \Leftrightarrow 1 + \frac{1}{n} \le 2\\ \Leftrightarrow \frac{{n + 1}}{n} - 2 \le 0\\ \Leftrightarrow \frac{{n + 1 - 2n}}{n} \le 0\\ \Leftrightarrow \frac{{ - n + 1}}{n} \le 0\\Do\,\,\,\,n \in {\mathbb{N}^*}\end{array}\)
Khẳng định trên là đúng