Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài hỏi 1 kiểu trả lời kiểu khác (chắc copy nhầm ak bn?)
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM và GH/GO=GA/GM=2
=>H,G,O thẳng hàng và GH=2GO
a) Vì E, D lần lượt là trung điểm của AB, AC (đề bài)
=> ED là đường trung bình của tam giác ABC (định nghĩa đường trung bình của tam giác)
=> ED // BC; ED = ½ BC(tính chất đường trung bình của tam giác)
Vì O là giao điểm của 3 đường trung trực trong tam giác ABC (đề bài); E, D lần lượt là trung điểm của AB, AC (đề bài)
=> OD vuông góc với AC; OE vuông góc với AB
Vì H là trực tâm của tam giác ABC (đề bài) => BH vuông góc với AC; CH vuông góc với AB
Mà OD vuông góc với AC; OE vuông góc với AB (cmt)
=> BH // OD; CH // OE (từ vuông góc đến // )
Vì BH // OD; ED // BC (Cmt) => Góc ODE = góc HBC
Vì CH // OE, ED // BC (cmt) => góc ODE = góc HCB
Xét tam giác OED và tam giác HCB có:
+)góc ODE = góc HCB
+) Góc ODE = góc HBC
=> Tam giác OED ~ tam giác HCB (g.g)(đpcm)
=> OE/CH = OD/BH = ED/BC = ½
b) Ta có G là trọng tâm của tam giác ABC (đề bài)
=> GD = ½ BG (Tính chất trọng tâm của tam giác)
Ta có BH // OD (Cmt) => Góc BHG = góc GOD (2 góc slt)
Xét tam giác GOD và tam giác GHB có:
+) GD = ½ BG
+) Góc GOD = góc BGH(cmt)
+) OD/BH = ½
=> Tam giác GOD ~ tam giác GHB
=> Góc OGD = góc HGB; OG/HG = OD/BH = ½ (tính chất 2 tam giác đồng dạng)
c) Ta có góc OGD = góc HGB (cmt); B, G, D thẳng hàng
=> H, G, O thẳng hàng vì H và O nằm ở 2 mặt phẳng khác nhau, bờ là BD
Ta có OG/HG = ½ (cmt) => GH = 2OG
Good luck!
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM
=>H,G,O thẳng hàng
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM
=>H,G,O thẳng hàng
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng