Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: B N C ^ = 90 0 => N ∈ (O; B C 2 )
B M C ^ = 90 0 => M ∈ (O; B C 2 )
=> B, C, M, N cùng thuộc đường tròn tâm (O; B C 2 )
b, ∆ABC đều có G là trực tâm đồng thời là trọng tâm
∆AOB vuông tại O có R = ON = a 2
Ta có OA = a 2 - a 2 4 = a 3 2 > R
=> A nằm ngoài (O)
Ta có OG = 1 3 OA = a 3 6 < R
=> G nằm ngoài (O)
a: góc BMC+góc BNC=90+90=180 độ
=>BMCN nội tiếp
b: Xét ΔAFM và ΔAMK có
góc AMF=góc AKM
góc FAM chung
=>ΔAFM đồng dạng với ΔAMK
=>AF/AM=AM/AK
=>AM^2=AF*AK
a: Xét tứ giác BNMC có góc BNC=góc BMC=90 độ
nên BNMC là tứ giác nội tiếp
=>B,N,M,C cùng thuộc (O)
b: Xét (O) có
BC là đường kính
MNlà dây
Do đó: BC>MN
c: Vì ΔABC đều có G là giao của hai đường cao
nên G là tâm đường tròn ngoại tiếp ΔABC và cũng là trọng tâm
=>GA=GC và AG=2/3AO
=>GC>GO
=>G nằm trong (O)
a: Xét tứ giác MBOC có \(\widehat{MBO}+\widehat{MCO}=90^0+90^0=180^0\)
=>MBOC là tứ giác nội tiếp
=>M,B,O,C cùng thuộc một đường tròn
b: Sửa đề: \(CH\cdot HB=OH\cdot HM\)
Xét (O) có
MB,MC là các tiếp tuyến
Do đó: MB=MC
=>M nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra MO là đường trung trực của BC
=>MO\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBM vuông tại B có BH là đường cao
nên \(OH\cdot HM=HB^2\)
=>\(OH\cdot HM=HB\cdot HC\)
a, Ta có AC ; AB lần lượt là tiếp tuyến (O) với C;B là tiếp điểm
=> ^ACO = ^ABO = 900
Xét tứ giác ABOC có
^ACO + ^ABO = 1800
mà 2 góc này đối
Vậy tứ giác ABOC là tứ giác nt 1 đường tròn
hay các điểm A;B;O;C cùng thuộc 1 đường tròn
b, Ta có AB = AC ( tc tiếp tuyến cắt nhau )
OC = OB = R
Vậy OA là đường trung trực đoạn BC
=> OA vuông BC
Xét tam giác ACO vuông tại C, đường cao CH
Ta có AC^2 = AH.AO ( hệ thức lượng )
Xét tam giác ACE và tam giác ADC
^A _ chung
^ACE = ^ADC ( cùng chắn cung CE )
Vậy tam giác ACE ~ tam giác ADC (g.g)
\(\dfrac{AC}{AD}=\dfrac{AE}{AC}\Rightarrow AC^2=AE.AD\)
=> AH . AO = AE . AD (*)
Xét tam giác AHE và tam giác ADO ta có
AH/AD = AE/AO ( tỉ lệ thức * )
^A _ chung
Vậy tam giác AHE ~ tam giác ADO (g.g)
=> ^AHE = ^ADO (1)
Lại có ^ACE = ^CDE ( cùng chắn cung CE ) (2)
Lấy (1) + (2) ta được ^BDC = ^AHE + ^ACE
dm có ông nào giải hộ tôi điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
a: Xét tứ giác MAOB có
\(\widehat{OAM}+\widehat{OBM}=180^0\)
Do đó: MAOB là tứ giác nội tiếp
a) Ta có
MAMA là tiếp tuyến của đường tròn (gt)
⇒⇒ MA⊥OAMA⊥OA => ˆMAO=90°MAO^=90°
MBMB là tiếp tuyến của đường tròn (gt)
⇒⇒ MB⊥OBMB⊥OB => ˆMBO=90°MBO^=90°
Xét tứ giác MAOBMAOB có ˆMAO+ˆMBO=180°MAO^+MBO^=180° mà chúng ở vị trí đối nhau
⇒⇒ tứ giác MAOBMAOB là tứ giác nội tiếp
⇒⇒ M,A,O,BM,A,O,B cùng thuộc 11 đường tròn
b) Ta có MA,MBMA,MB là 2 tiếp tuyến cắt nhau tại MM
⇒⇒ MA=MBMA=MB ⇒⇒ MOMO là tia phân giác ˆAMBAMB^
Xét ΔAMI∆AMI và ΔBMI∆BMI
Có MA=MBMA=MB (cmt)
ˆAMI=ˆBMIAMI^=BMI^ (cmt)
MIMI chung => ΔAMI=ΔBMI∆AMI=∆BMI (c.g.c)
⇒⇒ ˆAIM=ˆBIMAIM^=BIM^
Mà ˆAIM+ˆBIM=180°AIM^+BIM^=180° (kề bù)
⇒⇒ ˆAIM=180°2=90°AIM^=180°2=90°
⇒⇒ MO⊥ABMO⊥AB tại II
c) Ta có: ˆBDC=90°BDC^=90°(Góc nội tiếp chắn đường kính BCBC)
⇒⇒ ΔBDC∆BDC vuông tại D⇒BD⊥CDD⇒BD⊥CD
ΔBCM⊥BΔBCM⊥B (do BMBM là tiếp tuyến của (O))
Hệ thức lượng vào ΔBCM⊥B,BD⊥CDΔBCM⊥B,BD⊥CD (chứng minh trên) ta có:
BM2=MD.MCBM2=MD.MC (1)
Xét ΔMAO∆MAO vuông tại A
AI⊥OMAI⊥OM (Vì AB⊥OMAB⊥OM) ⇒⇒ AM2=MI.MOAM2=MI.MO (2)
mà AM=BMAM=BM (tính chất hai tiếp tuyến cắt nhau) (3)
Từ (1), (2) và (3) ⇒⇒ MD.MC=MA2=MI.MOMD.MC=MA2=MI.MO
d) Xét ΔEOM∆EOM cà ΔIOF∆IOF
ˆEOMEOM^ chung
ˆOIF=ˆOEM=90°OIF^=OEM^=90° (gt &cm)
⇒⇒ ΔEOM∼ΔIOF∆EOM∼∆IOF (g.g)
⇒⇒ OEOI=OMOFOEOI=OMOF (tỉ số đồng dạng)
⇒⇒ OE.OF=OM.OIOE.OF=OM.OI
Lại có ΔOAM∆OAM vuông tại AA
Mà AI⊥OMAI⊥OM (cmt)
⇒⇒ OA2=OI.OMOA2=OI.OM Mà OA=OC=ROA=OC=R
⇒⇒ OC2=OF.OEOC2=OF.OE
⇒⇒ OCOE=OFOCOCOE=OFOC
Xét ΔOCF∆OCF và ΔOCE∆OCE có
ˆCOFCOF^ chung
OCOE=OFOCOCOE=OFOC
⇒⇒ ΔOCF∼ΔOEC∆OCF∼∆OEC (c.g.c)(c.g.c)
⇒⇒ ˆOFC=ˆOCE=90°OFC^=OCE^=90°
⇒⇒ OC⊥CFOC⊥CF tại C
⇒⇒ FCFC là tiếp tuyến của đường tròn
(ĐPCM)
b: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
hay A,N,H,M cùng thuộc 1 đường tròn
Chúc bạn học tốt nha!!!
chúc bạn học giỏi