K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAB có

E,D lần lượt là trung điểm của CA,CB

=>ED là đường trung bình của ΔCAB

=>ED//AB và \(ED=\dfrac{AB}{2}\)

Ta có: ED//AB

AB\(\perp\)AC

Do đó: ED\(\perp\)AC tại E

=>CA\(\perp\)FD tại E

Xét ΔCFD vuông tại C có CE là đường cao

nên \(FE\cdot FD=CF^2\left(1\right)\)

Xét ΔCFB vuông tại C có CH là đường cao

nên \(FH\cdot FB=FC^2\left(2\right)\)

Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)

b: Xét tứ giác AHCB có

\(\widehat{CHB}=\widehat{CAB}=90^0\)

=>AHCB là tứ giác nội tiếp đường tròn đường kính BC

=>\(\widehat{HCA}=\widehat{HBA}\)

=>\(\widehat{ABH}=\widehat{ECH}\)

Xét ΔCHB vuông tại H và ΔFCB vuông tại C có

\(\widehat{CBH}\) chung

Do đó: ΔCHB đồng dạng với ΔFCB

=>\(\dfrac{HB}{CB}=\dfrac{HC}{FC}\)

=>\(\dfrac{HB}{HC}=\dfrac{CB}{FC}\left(1\right)\)

Xét ΔABC vuông tại A và ΔECF vuông tại E có

\(\widehat{ACB}=\widehat{EFC}\left(=90^0-\widehat{CDF}\right)\)

Do đó: ΔABC đồng dạng với ΔECF

=>\(\dfrac{AB}{CE}=\dfrac{BC}{CF}\)(2)

Từ (1) và (2) suy ra \(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)

Xét ΔABH và ΔECH có

\(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)

\(\widehat{HBA}=\widehat{HCE}\)

Do đó: ΔABH đồng dạng với ΔECH

21 tháng 4 2018

Tương tự HS tự làm