Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\\ \Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\\ =\dfrac{\left(6x-12y\right)+\left(8z-6x\right)+\left(12y-8z\right)}{4+9+16}=\dfrac{0}{29}=0\\ \Rightarrow2x=4y;4z=3x;3y=2z\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ =\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\\ \Rightarrow x=12;y=6;z=9\)
\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\\ \Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\\ =\dfrac{\left(6x-12y\right)+\left(8z-6x\right)+\left(12y-8z\right)}{9+4+16}=0\\ \Rightarrow2x=4y;4z=3x;3y=2z\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\\ \Rightarrow x=12;y=6;z=9\)
Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\)
=>x=15k; y=20k; z=24k
\(A=\dfrac{2\cdot15k+3\cdot20k+4\cdot24k}{3\cdot15k+4\cdot20k+2\cdot24k}=\dfrac{186}{173}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=\dfrac{2x+3y+4z}{30+60+96}=\dfrac{3x+4y+2z}{45+80+48}\\ \Leftrightarrow A=\dfrac{2x+3y+4z}{3x+4y+2z}=\dfrac{186}{173}\)
Giải:
Ta có:
\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}.\)
\(\Rightarrow\dfrac{3\left(2x-4y\right)}{3^2}=\dfrac{2\left(4z-3x\right)}{2^2}=\dfrac{4\left(3y-2z\right)}{4^2}.\)
\(\Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}.\)
\(=\dfrac{6x-12y+8z-6x+12y-8z}{9+4+16}.\)
\(=\dfrac{\left(6x-6x\right)+\left(8z-8z\right)+\left(12y-12y\right)}{19}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}.\\4z=3x\Rightarrow\dfrac{z}{3}=\dfrac{x}{4}.\\3y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{3}.\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}_{\left(1\right)}\) và \(2x-y+z=27_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ số bằng nhau có:
\(\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3.\)
Từ đó: \(\left\{{}\begin{matrix}2x=3.8=24\Rightarrow x=12.\\y=3.2=6.\\z=3.3=9.\end{matrix}\right.\)
Vậy.....
\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\\ \Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\\ =\dfrac{6x-12y+8z-6x+12y-8z}{9+4+16}=\dfrac{0}{29}=0\\ \Rightarrow2x=4y;4z=3x;3y=2z\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\\ \Rightarrow x=12;y=6;z=9\)
Ta có
\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\)
\(\Rightarrow\dfrac{3\left(2x-4y\right)}{3.3}=\dfrac{2\left(4z-3x\right)}{2.2}=\dfrac{4\left(3y-2z\right)}{4.4}\)
\(\Rightarrow\dfrac{6x-12y}{3^2}=\dfrac{8z-6x}{2^2}=\dfrac{12y-8z}{4^2}\)
\(=\dfrac{6x-12y+8z-6x+12y-8z}{3^2+2^2+4^2}=0\)
Nên \(\dfrac{2x-4y}{3}=0\Rightarrow2x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\left(1\right)\)
Và\(\dfrac{4z-3x}{2}=0\Rightarrow4z=3x\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{8}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x+z-y}{8+3-2}=\dfrac{36}{9}=4\)
*\(\dfrac{x}{4}=4\Rightarrow x=4.4=16\)
*\(\dfrac{y}{2}=4\Rightarrow y=2.4=8\)
*\(\dfrac{z}{3}=4\Rightarrow z=3.4=12\)
Vậy x = 16 và y = 8 và z = 12
1) \(x:y:z=2:3:4\) ⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
⇒ x=4;y=6;z=8
\(1,\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng t/c dtsbn
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot4=8\end{matrix}\right.\)
\(2,\) Áp dụng t/c dtsbn
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{3y}{-9}=\dfrac{2z}{8}=\dfrac{4x-3y-2z}{8-\left(-9\right)-8}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot\left(-3\right)=-6\\z=2\cdot4=8\end{matrix}\right.\)
\(3,4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8};\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)
Áp dụng t/c dtsbn
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x+y+z}{9+6+8}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot6=12\\z=2\cdot8=16\end{matrix}\right.\)
\(4,5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{9}=\dfrac{y}{15};\dfrac{y}{z}=\dfrac{3}{2}\Rightarrow\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x}{18}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{18+45-40}=\dfrac{34}{23}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{34}{23}\cdot9=\dfrac{306}{23}\\y=\dfrac{34}{23}\cdot15=\dfrac{510}{23}\\z=\dfrac{34}{23}\cdot10=\dfrac{340}{23}\end{matrix}\right.\)
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\Rightarrow x=15k;y=20k;z=24k\)
\(M=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186}{245}\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
cứuuuuuuuuuuuu