K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Đặt \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)

Ta có: \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{a+b+c+d}{b+c+d+e}\) ( t/c dãy tỉ số bằng nhau )

\(\Rightarrow k^4=\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4\) (1)

\(k^4=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}\) (2)

Từ (1), (2) \(\Rightarrow\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4=\dfrac{a}{e}\left(đpcm\right)\)

Vậy...

13 tháng 6 2017

áp dụng tc dãy tỉ ra luôn

26 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)

Ta có:

\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)

27 tháng 10 2017

Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học. vui

14 tháng 12 2021

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)

\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)

\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)

Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)

Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)

1 tháng 4 2018

Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=t\) ta có:

\(\dfrac{2a^4}{2b^4}=\dfrac{3b^4}{3c^4}=\dfrac{4c^4}{4d^4}=\dfrac{5d^4}{5e^4}=t^4\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(t^4=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)

Mặt khác: \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}=t.t.t.t=t^4\)

Ta có đpcm

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)

\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)

 

28 tháng 12 2021

Bạn à tôi chịu

 

28 tháng 12 2021

hihithì nó khó thiệt mà

Ta có: \(\dfrac{a^4}{b^4}=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}\)

\(=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}\cdot\dfrac{e}{f}\)

\(=\dfrac{a}{f}\)

2 tháng 8 2021

tại sao \(\dfrac{a}{b}\).\(\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{e}{f}\)=\(\dfrac{a}{f}\)????

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:
a. 

$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0$

$\Rightarrow \frac{ad-bc}{bd}< 0$

$\Rightarrow ad-bc<0$ (do $bd>0$)

$\Rightarrow ad< bc$ (đpcm)

b.

$\frac{a}{b}-\frac{a+c}{b+d}=\frac{a(b+d)-b(a+c)}{b(b+d)}=\frac{ad-bc}{b(b+d)}<0$ do $ad-bc<0$ và $b(b+d)>0$

$\Rightarrow \frac{a}{b}< \frac{a+c}{b+d}$

--------

$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$

$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.