Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét (O) có
ΔMKD nội tiếp
MD là đường kính
Do đó: ΔMKD vuông tại K
=>MK\(\perp\)KD tại K
=>MK\(\perp\)AD tại K
Xét ΔMDA vuông tại M có MK là đường cao
nên \(AK\cdot AD=AM^2\left(1\right)\)
Xét ΔAOM vuông tại M có MH là đường cao
nên \(AH\cdot AO=AM^2\left(2\right)\)
Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)
a: BC=10cm
=>AH=6*8/10=4,8cm
b: ΔAHB vuông tại H
mà HM là trung tuyến
nên HM=AM
Xét ΔOAM và ΔOHM có
OA=OH
MA=MH
OM chung
Do đó: ΔOAM=ΔOHM
=>góc OHM=90 độ
=>MH là tiếp tuyến của (O)
a: góc ACB=1/2*180=90 độ
=>AC vuông góc BE
góc AME+góc ACE=180 độ
=>AMEC nội tiếp
b: Xét ΔBCA vuông tại C và ΔBME vuông tại M có
góc CBA chung
=>ΔBCA đồng dạng với ΔBME
=>BC/BM=BA/BE
=>BE*BA=BM*BA=3R*2R=6R^2
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
b: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=OA^2-AB^2