Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)
b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)
c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)
a) \(\Delta \) song song với đường thẳng \(3x + y + 9 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ pháp tuyến là \(\overrightarrow n = \left( {3;1} \right)\)
\(\Delta \) đi qua điểm \(A(2;1)\) nên ta có phương trình tổng quát
\(3\left( {x - 2} \right) + \left( {y - 1} \right) = 0 \Leftrightarrow 3x + y - 7 = 0\)
\(\Delta \) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1} \right)\) nên có vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 3} \right)\)
Phương trình tham số của đường thẳng \(\Delta \) là:
\(\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 3t\end{array} \right.\)
b) \(\Delta \) vuông góc với đường thẳng \(2x - y - 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ chỉ phương là \(\overrightarrow u = \left( {2; - 1} \right)\)
\(\Delta \) đi qua điểm \(B( - 1;4)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 4 - t\end{array} \right.\)
\(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 1} \right)\) nên có vectơ pháp tuyến là \(\overrightarrow n = \left( {1;2} \right)\)
Phương trình tổng quát của đường thẳng \(\Delta \)là:
\(\left( {x + 1} \right) + 2\left( {y - 4} \right) = 0 \Leftrightarrow x + 2y - 7 = 0\)
d nhận (1;-2) là 1 vtcp
a. d' song song d nên nhận (1;-2) là 1 vtcp
Phương trình d': \(\dfrac{x+5}{1}=\dfrac{y-2}{-2}\)
b. d' vuông góc d nên nhận \(\left(2;1\right)\) là 1 vtcp
Phương trình d': \(\dfrac{x+5}{2}=\dfrac{y-2}{1}\)
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
a.
\(\overrightarrow{EF}=\left(1;-1\right)\Rightarrow d_4\) nhận (1;-1) là 1 vtpt
Phương trình \(d_4\) :
\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)
b.
\(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtcp nên \(d_5\) nhận \(\left(2;-1\right)\) là 1 vtpt
Pt \(d_5\) : \(2\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-7=0\)
c.
\(\Delta\) nhận \(\left(-1;-3\right)\) là 1 vtcp nên \(d_6\) nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình \(d_6\) :
\(3\left(x-4\right)-1\left(y-6\right)=0\Leftrightarrow3x-y-6=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}4a+b=3\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3-4a=-5\end{matrix}\right.\)
Đường thẳng \(\Delta\) nhận (3;-4) là 1 vtpt
a. Do \(d_1||\Delta\) nên \(d_1\) cũng nhận (3;-4) là 1 vtpt
Phương trình d1:
\(3\left(x-2\right)-4\left(y-5\right)=0\Leftrightarrow3x-4y+14=0\)
b. Do d2 vuông góc \(\Delta\) nên d2 nhận (4;3) là 1 vtpt
Phương trình d2:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)
\(\Delta:\dfrac{x-2}{1}=\dfrac{y+3}{-2}\)
\(\Rightarrow\) VTCP của \(\Delta\) là \(\overrightarrow{u}=\left(1;-2\right)\) \(\Rightarrow\) VTPT của \(\Delta\) là \(\overrightarrow{n}=\left(2;1\right)\).
a) Đường thẳng song song \(\Delta\Rightarrow\) nó nhận \(\overrightarrow{u}\) làm VTCP
\(\Rightarrow\) PT đường thẳng đi qua \(A\left(-5;2\right)\) và song song \(\Delta\) là: \(\dfrac{x+5}{1}=\dfrac{y-2}{-2}\).
b) Đường thẳng vuông góc \(\Delta\Rightarrow\) nó nhận \(\overrightarrow{n}\) làm VTCP
\(\Rightarrow\) PT đường thẳng đi qua \(A\left(-5;2\right)\) và vuông góc \(\Delta\) là: \(\dfrac{x+5}{2}=\dfrac{y-2}{1}\).