K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM =  O A 2 = R 2

b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM

c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là  A O M ^ = 60 0 . Sử dụng tỉ số lượng giác của góc  A O M ^ , tính được OM=2OA=2R, tức là M cách O một khoảng 2R

d, Kết hợp ý a) và b) => OK.OH =  R 2 => OK = R 2 O H

Mà độ dài OH không đổi nên độ dài OK không đổi

Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi

a) Xét (O) có

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: MO là tia phân giác của \(\widehat{AMB}\)(Tính chất hai tiếp tuyến cắt nhau)

nên \(\widehat{AMB}=2\cdot\widehat{AMO}\)(1)

Xét ΔOAM vuông tại A có 

\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)

hay \(\widehat{AMO}=30^0\)(2)

Thay (2) vào (1), ta được: \(\widehat{AMB}=60^0\)

Xét ΔAMB có MA=MB(cmt)

nên ΔAMB cân tại M(Định nghĩa tam giác cân)

Xét ΔAMB cân tại M có \(\widehat{AMB}=60^0\)(cmt)

nên ΔAMB đều(Dấu hiệu nhận biết tam giác đều)

 

11 tháng 1 2021

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

14 tháng 8 2018

dễ ẹc!!!!!!!!

1 tháng 5 2020

Trả lời :

Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.

- Hok tốt !

^_^

19 tháng 9 2018

a/ Xét tg vuông AOH và tg vuông IOK có

\(OI\perp AH;KI\perp AO\Rightarrow\widehat{KIO}=\widehat{HAO}\)

\(\Rightarrow\Delta AOH\) đồng dạng với \(\Delta IOK\)(Hai tg vuông có hai góc nhọn tương ứng bằng nhau) (1)

b/

Từ (1) \(\Rightarrow\frac{OK}{OH}=\frac{OI}{OA}\Rightarrow OH.OI=OK.OA\)

Ta có \(OA\perp BC\)(Hai tiếp tuyến xuất phát từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm vuông góc và chia đôi dây cung tạo bởi hai tiếp điểm)

Xét tg vuông ABO có \(OB^2=OK.OA=3\) không đổi

\(\Rightarrow OH.OI\)không đổi mà OH không đổi => OI không đổi

Mà H; O cố định => I cố định => Khi A chay trên xy thì BC luôn đi qua điểm I cố định

19 tháng 11 2018

bạn ơi ko có hingf ak