K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2023

vì AM là tiếp tuyến của ( O) => OA⊥AM =>ΔOAM vuông ở A   

=> điểm A thuộc đường tròn đường kính OM

vì BM là tiếp tuyến của (O) => OB⊥BM =>ΔOBM vuông ở B

=> điểm B thuộc đường tròn đường kính OM 

Vì OH⊥MI=>ΔOHM vuông tại H

=> điểm H thuộc đường tròn đường kính OM

=> 4 điểm O,A,M,B,H cùng thuộc đường tròn đường kính OM

10 tháng 4 2022

a) tứ giác AOBM nội tiếp thì có tâm đường tròn là trung điểm OM

cần CM tứ giác OIMB nội tiếp: dùng tổng hai góc đối cộng với nhau bằng 180o, mà đã có OBM=90o, mà I là trung điểm dây cung CD nên OI vuông góc CD luôn => OIM=90o

Vậy tứ giác OIMB nội tiếp thì tâm đường tròn cũng tại trung điểm OM luôn

b) 5 điểm A,I,O,B,M cùng thuộc 1 đtron

=> tứ giác AIOB nội tiếp => góc AIB=AOB (cùng chắn cung)

tứ giác AIOM nội tiếp => góc AIM=AOM (ccc)

mà góc AOM=1/2AOB=AIM=1/2AIB

=> BIM=1/2AIB (đpcm

9 tháng 3 2022

cần gấp câu c) ạ

26 tháng 3 2023

a) Ta có

OA vg góc vs MA (gt) => góc MAO = 90 độ 

OB vg góc vs MB (gt) => góc MBO = 90 độ

Tứ giác MAOB có góc MAO + góc MBO = 90 + 90 = 180 độ

=> MAOB nội tiếp 

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=OM^2-R^2

b: Xét (O) co

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2=MC*MD

=>MH/MD=MC/MO

=>ΔMHC đồng dạng vơi ΔMDO

=>góc MHC=góc MDO

=>góc ODC+góc OHC=180 độ

=>OHCD nội tiếp

loading...  loading...  

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp(1)

Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)

nên OHMB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA

hay \(MA^2=MD\cdot MC=MO^2-R^2\)

25 tháng 5 2022

 xin hình vẽ vs ạ