K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án:

MN=3(cm)MN=3(cm)

Giải thích các bước giải:

 M là trung điểm của CA nên MA=MC=AC/2

N là trung điểm của CB nên CN=NB=CB/2

C nằm giữa A và B nên C nằm giữa M và N

Do đó, MN=MC+CN=AC/2+CB2=AC+CB/2=AB/2=3(cm)MN=MC+CN=AC/2+CB/2=AC+CB/2=AB/2=3(cm)

6 tháng 3 2020

ta có MN = MC+CN

mà \(\hept{\begin{cases}MC=\frac{1}{2}AC\\NC=\frac{1}{2}CB\end{cases}}\)

=>MN=\(\frac{1}{2}AC+\frac{1}{2}CB\)

=> MN=\(\frac{1}{2}\left(AC+CB\right)\)

=> MN=\(\frac{1}{2}.6=3cm\)

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

10 giây suy nghĩ cấm tìm trên mạng

hồi sáng tớ đố bài này rùi dễ có trên mạng mà cấm tìm đó

4
4 tháng 10 2016

Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!

4 tháng 10 2016

hại não o_o

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

10 giây suy nghĩ cấm tìm trên mạng

1
4 tháng 10 2016

cái này là toán lớp 1 là tớ chết liền

và sao dài vậy bạn

vừa lười + khó = ko làm

29 tháng 4 2022

bài này lớp 6, 7 mà bn

30 tháng 4 2022

Lớp 7 

9 tháng 8 2019

De bai sai roi phai la cm M,N,P thang hang moi dung 

Noi PF,PE , FM EM

xet tam giac AFH vuong tai F va tam giac AEH vuong tai E deu co P la trung diem canh huyen AH (gt)

=> PF =PE (=1/2 AH)  => P \(\in\) trung truc EF     (1)

xet tam giac BFC vuong tai F va tam giac EBC vuong tai E cung deu co M la trung diem canh huyen BC (gt)

=> FM = ME ( = 1/2 BC )   => M\(\in\) trung truc EF      (2)

Lai co N la trung diem EF (gt)      (3)

tu (1),(2),(3)    => M,N,P thang hang   DPCM

Chuc ban hoc tot !

26 tháng 5 2020

hiiiiiiiiiiiiiiiii bn ccccccccccccccccos kkkkkkkkkkkkkkecdjfv cdsjx snbc hgcduvskla

a: vecto AC+vecto BD

=vecto AI+vecto IC+vecto BI+vecto ID

=vecto ID+vecto IC

=2*vecto IJ

vecto AD+vecto BC

=vecto AI+vecto ID+vecto BI+vecto IC

=vecto IC+vecto ID

=2*vecto IJ

=vecto AC+vecto BD

b: vecto GA+vecto GB+vecto GC+vecto GD

=2*vecto GI+2*vecto GJ

=2(vecto GI+vecto GJ)

=vecto 0

16 tháng 1 2023

hi

toán lớp 1 ???

6 tháng 3 2020

Đây mà là toán lớp 1 hả ?

1 tháng 12 2016

O M N 4 10 P 6 x

a) M nằm giữa O và N vì M và N cùng trên một tia gốc O và OM < ON (4 < 10)

b) Q là trung điểm của OM nên OQ = OM/2 = 4/2 = 2.

Q nằm trên đoạn OM nên Q nằm trên tia Ox, suy ra Q nằm giữa O và N (vì OQ < ON)

=> QN = ON - OQ = 10 - 2 = 8.

Vì P và N nằm trên 2 tia đối nhau gốc O nên O nằm giữa P và N, suy ra:

   PN = OP + ON = 6+ 10 = 16

P, Q cùng nằm trên tia NP (gốc N) mà PN > QN (16 > 8) nên Q nằm giữa P và N, mà QN = 1/2 PN (8 = 1/2 16) nên Q là Trung điểm của PN.

15 tháng 12 2016

dien h hinh chu nhat ABCD la 42x18=756

dien h hinh chu nhat AMON la 756:4=189

vây NOD là 189 : 2= 94,5

đap so 94,5