K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 7 2021

undefined

NV
12 tháng 7 2021

O là trung điểm AB \(\Rightarrow OA=OB=\dfrac{AB}{2}=a\)

Áp dụng định lý Pitago:

\(AD=\sqrt{AO^2+OD^2}=\dfrac{a\sqrt{5}}{2}\)

Xét hai tam giác vuông AOD và ACB có góc A chung

\(\Rightarrow\Delta AOD\sim\Delta ACB\Rightarrow\dfrac{AD}{AB}=\dfrac{AO}{AC}\Rightarrow AC=\dfrac{AO.AB}{AD}=\dfrac{4a\sqrt{5}}{5}\) 

\(BC=\sqrt{AB^2-AC^2}=\dfrac{2a\sqrt{5}}{5}\)

b. Ta có: \(AE=\sqrt{AO^2+OE^2}=a\sqrt{2}\)

\(BE=\sqrt{OB^2+OE^2}=a\sqrt{2}\)

\(\Rightarrow AE^2+BE^2=4a^2=AB^2\)

\(\Rightarrow\Delta ABE\) vuông tại E (Pitago đảo)

\(\Rightarrow\) Hai điểm E và C cùng nhìn AB dưới 1 góc vuông nên bốn điểm A,B,C,E cùng thuộc đường tròn đường kính AB (đpcm)

24 tháng 8 2016

Bạn ơi cho mình hỏi, từ B kẻ BC vuông góc với AD tại đâu vậy?

 

13 tháng 8 2016

Mình cảm ơn bạn nhé ^^

20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.

30 tháng 12 2023

a: Ta có: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>\(HA=HB=\dfrac{AB}{2}=2,4\left(cm\right)\)

Ta có: ΔOHA vuông tại H

=>\(OH^2+HA^2=OA^2\)

=>\(OH^2=3^2-2,4^2=3,24\)

=>\(OH=\sqrt{3,24}=1,8\left(cm\right)\)

OH+HC=OC

=>HC=OC-OH=5-1,8=3,2(cm)

b: Ta có: ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=2,4^2+3,2^2=16\)

=>\(AC=\sqrt{16}=4\left(cm\right)\)

Xét ΔAOC có \(AO^2+AC^2=OC^2\)

nên ΔAOC vuông tại A

=>CA\(\perp\)OA tại A

=>CA là tiếp tuyến của (O)

b: Xét ΔCAB có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAB cân tại C

=>CA=CB

Xét ΔOAC và ΔOBC có

OA=OB

AC=BC

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

Xét (O) có

EA,ED là các tiếp tuyến

Do đó: EA=ED

Xét (O) có

FD,FB là các tiếp tuyến

Do đó: FD=FB

Chu vi tam giác CEF là:

\(CE+EF+CF\)

=CE+ED+DF+CF

=CE+EA+CF+FB

=CA+CB

=2CA

=8(cm)