Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao của CO với DB là E
a: Xét ΔOAC vuông tại A và ΔOBE vuông tại B có
OA=OB
góc AOC=góc BOE
=>ΔOAC=ΔOBE
=>AC=BE và OD=OE
Xét ΔACO vuông tại A và ΔBDO vuông tại B có
góc ACO=góc BDO(=góc DCO)
=>ΔACO đồng dạng với ΔBDO
b: Xét ΔDCE có
DO vừa là đường cao, vừa là trung tuyến
=>ΔDCE cân tại D
=>DE=DC
=>DC=DB+BE=DB+AC
c; Xét ΔNAC vàΔNDB có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔNAC đồng dạng với ΔNDB
=>NA/ND=AC/BD=CM/MD
=>MN//AC
a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)
=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)
\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)
\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)
b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)
=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)
=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)
=> AC=CM (đpcm).