K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Ta có : \(MA=5\leftrightarrow x^2+\left(y-1\right)^2=5^2\)

Thay tọa độ điểm x,y vào tham số t vào pt trên ta được :

\(\left(2+2t\right)^2+\left(3+t-1\right)^2=25\)

\(\Leftrightarrow4t^2+8t+4+4+4t+t^2=25\)

\(\Leftrightarrow5t^2+12t-17=0\rightarrow t_1=1;t_2=-\dfrac{17}{5}\)

Với \(t_1=1\), ta được điểm \(x=4;y=4\Rightarrow M_1\left(4;4\right)\)

Với \(t_2=-\dfrac{17}{5}\)ta được điểm \(x=-\dfrac{24}{5};y=-\dfrac{2}{5}\Rightarrow M_2\left(-\dfrac{24}{5};-\dfrac{2}{5}\right)\)

NV
24 tháng 2 2021

Gọi \(M\left(2+2t;3+t\right)\)

M có tọa độ nguyên \(\Leftrightarrow t\) nguyên

\(\overrightarrow{AM}=\left(2+2t;2+t\right)\) \(\Rightarrow AM=\sqrt{\left(2+2t\right)^2+\left(2+t\right)^2}=5\)

\(\Leftrightarrow5t^2+12t-17=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{17}{5}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow M\left(4;4\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:Điểm M,N có vẻ không có vai trò gì trong bài toán. 

Ta có: $\overrightarrow{u_{\Delta}}=(2,-1)$

$\overrightarrow{u_{d'}}=(a,b)$

\(\cos (\Delta, d')=\frac{\overrightarrow{u_{\Delta}}.\overrightarrow{u_d'}}{|\overrightarrow{u_{\Delta}}||\overrightarrow{u_d'}|}=\frac{2a-b}{\sqrt{a^2+b^2}.\sqrt{5}}=\cos 45^0=\frac{\sqrt{2}}{2}\)

$\Rightarrow a=3b$ hoặc $a=-\frac{b}{3}$

PTĐT $d'$ là:

$-x+3y=0$ hoặc $3x+y=0$

27 tháng 2 2021

Tại sao từ cos 450=\(\dfrac{\sqrt{2}}{2}\) thì lại => a=3b hoặc a=\(\dfrac{-b}{3}\) ạ ?

 

18 tháng 7 2017

Phương trình tổng quát \(\Delta\):

\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0

a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)

Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5

<=> \(5y^2-18y-8=0\)

<=>y=4 và y=\(\dfrac{-2}{5}\)

Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))

b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0

Ta có hệ phương trình:

\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)

\(\begin{cases} x=-2\\ y=1 \end{cases}\)

=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d

c. Nhận thấy, điểm A\(\notin\)\(\Delta\)

Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)

Vì M\(\in\Delta\)=> M(2y-4;y)

Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)\(\overrightarrow{u}\)(2;1)

\(\overrightarrow{AM}\) (2y-4;y-1)

Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)

<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)

<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0

<=> 2(2y-4)+(y-1)=0

<=> 5y-9=0

<=> y= \(\dfrac{9}{5}\)

=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))

1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)

=>(d') có VTPT là (-1;1)

Phương trình (d') là;

-1(x-3)+1(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

2: (d) có VTCP là (-1;1)

=>VTPT là (1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+y+1=0

Tọa độ H là;

x+y+1=0 và -x+y+2=0

=>x=1/2 và y=-3/2

 

21 tháng 3 2017

\(M\in d\Rightarrow M\left(3-2t;1+3t\right)\)

\(\Rightarrow\)\(\overrightarrow{AM}=\left(-1-2t;1+3t\right)\)

\(\Rightarrow AM=\sqrt{\left(-1-2t\right)^2+\left(1+3t\right)^2}=5\)

\(\Leftrightarrow13t^2+10t-23=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{-23}{13}\end{matrix}\right.\)

\(+t=1\Rightarrow M\left(1;4\right)\)

\(+t=\dfrac{-23}{13}\Rightarrow M=\left(\dfrac{85}{13};\dfrac{-56}{13}\right)\)

vậy có 2 điểm M cần tìm.

7 tháng 4 2022

Mik đang bận nên chỉ có HD thôi ạ :

-Viết p/t đ/t d ; biểu diễn tọa độ P theo d

- Tính MN ; NP ; MP

- ADCT :  \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)  ( p = a + b + c / 2 ) 

GPT tìm tọa độ P 

NV
7 tháng 4 2022

\(\overrightarrow{NM}=\left(3;3\right)\Rightarrow MN=\sqrt{3^2+3^2}=3\sqrt{2}\) và đường thẳng MN nhận (1;-1) là 1 vtpt

Phương trình MN: 

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

Do P thuộc (d) nên tọa độ có dạng: \(\left(-8+2t;t\right)\)

\(\Rightarrow d\left(P;MN\right)=\dfrac{\left|-8+2t-t\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|t-8\right|}{\sqrt{2}}\)

\(S_{MNP}=\dfrac{1}{2}.d\left(P;MN\right).MN=18\)

\(\Leftrightarrow\dfrac{1}{2}.\dfrac{\left|t-8\right|}{\sqrt{2}}.3\sqrt{2}=18\)

\(\Rightarrow\left|t-8\right|=12\Rightarrow\left[{}\begin{matrix}t=20\\t=-4\end{matrix}\right.\) (loại \(t=20\) do P có tung độ âm)

\(\Rightarrow P\left(-16;-4\right)\Rightarrow2a-13b=20\)

a: Δ có vtcp là (2;-1) và đi qua A(1;-3)

=>VTPT là (1;2)

PTTQ là:

1(x-1)+2(y+3)=0

=>x-1+2y+6=0

=>x+2y+5=0

b: Vì d vuông góc Δ nên d: 2x-y+c=0

Tọa độ giao của d1 và d2 là:

x+2y=8 và x-2y=0

=>x=4 và y=2

Thay x=4 và y=2 vào 2x-y+c=0, ta được

c+2*4-2=0

=>c=-2