Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C): x 2 + y 2 + 6 x − 2 y − 8 = 0 có tâm I(-3;1) và bán kính R = 3 2 .
Giả sử hai tiếp điểm của hai tiếp tuyến kẻ từ A là B, C (như hình vẽ).
Tứ giác IBAC có 3 góc vuông nên là hình chữ nhật.
Lại có IB = IC = R nên IBAC là hình vuông. Suy ra, tam giác IBA vuông cân.
Chọn A
chọn bừa ?
chọn bừa là coi như xong ak ?
k bt lm thì đừng cố tình khiến ngta lm sai
Gọi \(M=\left(m;m+5\right)\left(m\in\right)R\) là điểm cần tìm.
\(\Rightarrow IM=\sqrt{2m^2+32}\)
Ta có: \(cos\left(AM;IM\right)=cos45^o\)
\(\Leftrightarrow\dfrac{R}{IM}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{2m^2+32}}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\) vô nghiệm
Vậy không tồn tại điểm M thỏa mãn yêu cầu bài toán.
Đường tròn (C): x 2 + y 2 + 4 x + 2 y + 4 = 0 có tâm I(-2;-1) và bán kính R = 1.
Gọi 2 tiếp điểm là B và C.
Ta có: B A C ^ = 60 0 nên B A I ^ = I A C ^ = 1 2 B A C ^ = 30 0 ( tính chất 2 tiếp tuyến cắt nhau).
Vì sin B A I ^ = sin 30 0 = 1 2 ; lại có: sin B A I ^ = B I A I = R A I
Suy ra: R A I = 1 2 ⇔ A I = 2 R = 2 ( vì R = 1)
⇔ m + 2 2 + 3 − m 2 = 2 2 ⇒ 2 m 2 − 2 m + 9 = 0 (vô nghiệm).
Chọn D.
a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)
Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)
Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)
\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a-2b\right)^2=0\)
\(\Leftrightarrow a=2b\)
\(\Rightarrow\Delta:2x+y-5=0\)
b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+4\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)
Phương trình của (C) là: x 2 + y 2 − 6 x + 4 y − 12 = 0 ⇔ x − 3 2 + y + 2 2 = 25
Đường tròn (C) có tâm I(3; -2), bán kính R = 5.
Giả sử hai tiếp điểm của hai tiếp tuyến kẻ từ A là B, C (như hình vẽ).
Khi đó A B ⊥ A C ⇔ Tứ giác IBAC là hình vuông ⟺ tam giác IBA vuông cân
⟺ I A = I B 2 = R 2
⟺ m − 3 2 + 3 + 2 2 = 5 2 2 ⇔ m 2 − 6 m − 16 = 0 ⇔ m = − 2 m = 8
Đáp án là D.