Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK:
a.
xét tứ giác BDMI ta có : IMD = 90 (CD ⊥ MI)
IBD = 90 (BD là tiếp tuyến)
mà 2 góc này ở vị trí đối nhau ⇒tứ giác BDMI là tứ giác nội tiếp
⇒ DMB = DIB (2 góc nội tiếp cùng chắng cung DB của tứ giác BDMI) (1)
xét tứ giác ACMI ta có : IAC = 90 (AC là tiếp tuyến)
IMC = 90 (CD ⊥ MI)
mà 2 góc này ở vị trí đối nhau ⇒⇒ tứ giác ACMI là tứ giác nội tiếp
⇒ CMA = CIA (2 góc nội tiếp cung chắng cung AC của tứ giác ACMI) (2)
mà CMA + DMB = 90 (góc AMB là góc nội tiếp chắng nửa (o)) (3)
tứ (1) ; (2) và (3) ta có : CIA + DIB = 90
⇒ CID = 180 - 90 = 90
xét tứ giác MIEF ta có : AMB = 90 (góc nội tiếp chắng nửa (o))
CID = 90 (chứng minh trên)
mà 2 góc này ở vị trí đối nhau ⇒ tứ giác MIEF là tứ giác nội tiếp (đpcm)
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp