Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng qua O và vuông góc với AC và BD lần lượt tại H và K (H ∈ AC; KBD)
Ta có ∆AOH = ∆BOK (g.c.g) => AK = BK => AC = BD
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔABC vuông tại C
=>AC vuông góc CB
=>CB vuông góc BD
=>B nằm trên đường tròn đường kính CD
Xét tứ giác ACBD có
AB căt CD tại trung điểm của mỗi đường
AB=CD
=>ACBD là hình chữ nhật
=>AC=BD
b:
Th1: AC<BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM>ON
TH2:
AC>BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM<ON
TH3:
AC=BC
mà OM,ON lần lượt là khoảng cách từ O đến AC,BC
nên OM=ON
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
a Tg aeo=tg bfo,bABCD la hinh binh hanh