Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
\(\widehat{NBC}\) là góc nội tiếp chắn cung NC
\(\widehat{NAC}\) là góc nội tiếp chắn cung NC
Do đó: \(\widehat{NBC}=\widehat{NAC}\)
Xét ΔMAC và ΔMBN có
\(\widehat{MAC}=\widehat{MBN}\)
\(\widehat{M}\) chung
Do đó: ΔMAC đồng dạng với ΔMBN
=>\(\dfrac{MA}{MB}=\dfrac{MC}{MN}\)
=>\(MA\cdot MN=MB\cdot MC\)
a.Ta có là đường kính của
Mà
nội tiếp đường tròn đường kính
b.Ta có nội tiếp
là phân giác
c.Vì là đường kính của
Xét có
Mà là trực tâm
Mà thẳng hàng
Xét có:
Chung
a,Xét tứ giác ACHI có: góc ACB = 90o (góc nội tiếp chắn nửa đường tròn)
góc HIA = 90o (gt)
=> tổng hai góc này =180o mà đỉnh C và I lại nằm ở vị trí đối nhau => tứ giác ACHI là tứ giác nội tiếp đường tròn đường kính AH (đpcm)