Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cm tứ giác CHOD nội tiếp, rồi sẽ cm đc HK là phân giác của tam giác HAC, suy ra đpcm
b) Gọi N là giao điểm của AB và OI, cm OI.ON = OH.OM = R2 => ON = R2/OI mà d cố định nên OI không đổi
a.Vì MA,MB là tiếp tuyến của (O)
→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o
→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM
b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I
→OA2=OI.OM→OA2=OI.OM
C
Vì OF⊥CM=EOF⊥CM=E
→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp
→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn
→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^
→FC→FC là tiếp tuyến của (O)
1: Xét (O) có
OH là một phần đường kính
AB là dây
H là trung điểm của AB
Do đó: OH⊥AB
Xét tứ giác MDOH có
\(\widehat{MDO}+\widehat{MHO}=180^0\)
Do đó: MDOH là tứ giác nội tiếp
tam giác đồng dạng đi bà
nói rõ đi bà