Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)BAE: Có đường trung tuyến AO (O thuộc BE) với AO=BO=EO=1/2BE
=> \(\Delta\)BAE vuông tại A hay EA vuông góc AB
Mà AB và CD vuông góc với nhau => AE//CD => Tứ giác AECD là hình thang (1)
Lại có: 4 điểm A;E;C;D cùng nằm trên (O;R) => ) thuộc trung trực của AE và CD (2)
Từ (1) VÀ (2) => Hình thang AECD có trục đối xứng => Tứ giác AECD là hình thang cân
=> AC=DE (2 đg chéo) (đpcm).
b) Do AB vuông góc CD tại I
Ta có: \(IA^2+IC^2=AC^2\)(Định lí Pytagorean)
\(IB^2+ID^2=BD^2\)(Định lí Pytagorean)
\(\Rightarrow IA^2+IB^2+IC^2+ID^2=AC^2+BD^2\)
Vì \(AC=DE\)(cmt) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=DE^2+BD^2\)(3)
Chứng minh được \(\Delta\)BDE vuông tại D (Có trung truyến DO bằng 1/2 cạnh tương ứng BE)
\(\Rightarrow DE^2+BD^2=BE^2\)(4)
Thay (4) vào (3) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=BE^2\)(5)
R là bán kính của đường trond, BE là đường kính \(\Rightarrow BE^2=\left(2R\right)^2=4R^2\)(6)
Từ (5) và (6) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=4R^2\) (đpcm).
c) Mình chưa nghĩ ra ^^
a) Ta thấy BE là đường kính của (O). Suy ra ^BAE chắn nửa đường tròn hay AB vuông góc AE
Do đó AE // CD. Mà AE,CD là hai dây của đường tròn (O) nên (AC = (DE tức AC = DE (đpcm).
b) Tương tự câu a, \(\Delta\)BED vuông tại D. Áp dụng ĐL Pytagoras ta có:
\(\left(IA^2+IC^2\right)+\left(IB^2+ID^2\right)=AC^2+BD^2=DE^2+BD^2=BE^2=4R^2\)(đpcm).
c) Áp dụng ĐL Pytagoras và hệ thức lượng trong đường tròn ta có:
\(AB^2+CD^2=\left(IA+IB\right)^2+\left(IC+ID\right)^2=\left(IA^2+IB^2+IC^2+ID^2\right)+2\left(IA.IB+IC.ID\right)\)
\(=4R^2+4\left(R^2-OI^2\right)=8R^2-4OI^2\)(đpcm).
a) Xét ΔDAB có
DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)
DO là đường cao ứng với cạnh AB(gt)
Do đó: ΔDAB cân tại D(Định lí tam giác cân)
Suy ra: \(DA=DB\)(hai cạnh bên)
hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)
Xét (O) có
\(\widehat{AID}\) là góc nội tiếp chắn cung AD
\(\widehat{BID}\) là góc nội tiếp chắn cung BD
mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)
nên \(\widehat{AID}=\widehat{BID}\)
hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)
b) Xét (O) có
\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)
hay \(\widehat{FIB}=90^0\)
Xét tứ giác BIFO có
\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối
\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)
a) Xét (O;R) có:
\(\widehat{BCD}\)là góc nt chắn cung BC
\(\widehat{BAC}\)là góc nt chắn cung BC
\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)
Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)
Xét \(\Delta ACM\)và \(\Delta DBM\):
\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)
\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)
\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)
b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)
Xét \(\left(O;R\right):\)
\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)
\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)
Có\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)
Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)
Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)
Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)
Xét tg ABCE có:
\(AB//CE\)
\(\widehat{MAC}=\widehat{ABE}\)
\(\Rightarrow Tg\)ABCE là hthang cân
c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:
\(AM^2=AC^2-CM^2\)(1)
\(MB^2=BC^2-CM^2\)(2)
\(MC^2=BC^2-BM^2\)(3)
\(MD^2=BD^2-BM^2\)(4)
\(DE^2=BD^2+BE^2\)(5)
Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:
\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))
\(=AC^2+BD^2\)
\(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)
\(=DE^2\)(c/m (5))
Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)
Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)
a: góc BEI+góc BDI=180 độ
=>BEID nội tiếp
góc CEI+góc CFI=180 độ
=>CEIF nội tiếp
b: BEID nội tiếp
=>góc IDE=góc IBE=1/2*sđ cung CI
CEIF nội tiếp
=>góc IEF=góc ICF=1/2*sđ cung CI
=>góc IDE=góc IEF
BEID nội tiếp
=>góc IED=góc IBD=1/2*sđ cung IB
CEIF nội tiếp
=>góc IFE=góc ICE=1/2*sđ cung IB=góc IED
Xét ΔIDE và ΔIEF có
góc IDE=góc IEF
góc IED=góc IFE
=>ΔIDE đồng dạng với ΔIEF
2: góc BEA=1/2*180=90 độ
Xét ΔBMN vuông tại M và ΔBEA vuông tại E có
góc MBN chung
=>ΔBMN đồng dạng với ΔBEA
=>BM/BE=BN/BA
=>BE*BN=BA*BM=BC^2
=>AC^2+BE*BN=AB^2=4*R^2
a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB
Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)
b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)
Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)
a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB
Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)
b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)
Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)