K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOMA vuông tại A có 

\(OM^2=OA^2+AM^2\)

hay AM=16cm

a: \(MA=3\sqrt{3}\left(cm\right)\)

b: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO\(\perp\)AB

26 tháng 12 2019

a, Tính được AH = 5 . Từ đó suy ra AB=  2 5 và OM=4,5cm

b, Với ∆MAB cân tại MH là trung tuyến vừa là đường cao;

Ta có ∆MAO = ∆MBO => MBOB => MB là tiếp tuyến của (O)

c, Dễ thấy  M A 2   =   M H . M O  (Theo hệ thức lượng trong tam giác vuông)

Chứng minh được: ∆MBE:∆MBD

=>  M B 2 = M E . M D = M A 2

=> MH.MO = ME.MD

=> ∆EHM:∆ODM (c.g.c)

=>  E H M ^ = O D M ^

d, Kẻ BK ⊥ AD

Ta có: S H O A = 1 2 S A B D = 1 4 B K . A D

Vì BK ≤ 3 =>  S H O A lớn nhất khi B là điểm chính giữa cung AD khi đó AM = OA = 3

12 tháng 12 2023

a: Xét ΔAOM vuông tại A có \(AM^2+AO^2=OM^2\)

=>\(AM^2=5^2-3^2=16\)

=>\(AM=\sqrt{16}=4\left(cm\right)\)

Xét ΔAOM vuông tại A có \(tanAMO=\dfrac{AO}{AM}\)

=>\(tanAMO=\dfrac{3}{4}\)

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là trung trực của AB

=>MO\(\perp\)AB tại I và I là trung điểm của AB

c: Xét (O) có

ΔBDC nội tiếp

BC là đườngkính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CM tại D

Xét ΔCBM vuông tại B có BD là đường cao

nên \(MD\cdot MC=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MD\cdot MC=MI\cdot MO\)

=>\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

Xét ΔMDO và ΔMIC có

\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

\(\widehat{DMO}\) chung

Do đó: ΔMDO đồng dạng với ΔMIC