K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
12 tháng 5 2019
a, b, c HS tự làm
d, Gợi ý: G' ÎOI mà I G ' I O = 1 3 => G' thuộc (G'; 1 3 R)
a) Xét \(\Delta CDA\) và \(\Delta CBD\) có:
\(\left\{{}\begin{matrix}\widehat{ACD}-\text{góc chung}\\\widehat{CDA}=\widehat{CBD}\left(=\dfrac{1}{2}\stackrel\frown{AD}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CDA\sim\Delta CBD\left(g.g\right)\)
\(\Rightarrow\dfrac{CD}{CA}=\dfrac{CB}{CD}\Rightarrow CD^2=CA.CB\).
b) Ta dễ dàng chứng minh được \(\widehat{ODC}=\widehat{OIC}=90^o\), do đó tứ giác CDOI nội tiếp đường tròn đường kính OC.
c) Theo tính chất đối xứng, ta có E, K đối xứng với nhau qua OI.
Do tứ giác CDOI nội tiếp nên \(\widehat{DIO}=\widehat{DCO}\).
Ta biến đổi góc: \(\widehat{COE}=\widehat{IOC}-\widehat{EOI}=\widehat{IOC}-\widehat{KOI}=\widehat{IOC}-\widehat{DIO}+\widehat{OKD}=\widehat{IOC}-\widehat{DIO}+\widehat{ODI}=\widehat{IOD}-\widehat{DOC}-\widehat{DIO}+\widehat{ODI}=180^o-\widehat{DIO}-\widehat{ODI}-\widehat{DOC}-\widehat{DIO}+\widehat{ODI}=180^o-2\widehat{DIO}-\widehat{DOC}=180^o-2\widehat{DCO}-90^o+\widehat{DCO}=90^o-\widehat{DCO}=\widehat{COD}\).
Từ đó \(\Delta DOC=\Delta EOC\left(c.g.c\right)\) nên CE cũng là tiếp tuyến của (O).
d) Do G là trọng tâm của tam giác ABD nên G nằm trên DI và \(DG=\dfrac{2}{3}DI\).
Dựng O' trên cạnh OI sao cho \(OO'=\dfrac{2}{3}OI\).
Theo định lý Thales đảo ta có O'G // OD.
Từ đó \(O'G=\dfrac{1}{3}OD=\dfrac{1}{3}R\) không đổi.
Mà I, O cố định nên O' cố định, từ đó G luôn di chuyển trên đường tròn \(\left(O';\dfrac{1}{3}R\right)\) cố định.
(Đây là một ứng dụng của phép vị tự)