K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

a) Ta có: góc AME = 90 độ (góc nt chắn nửa đt)
=> AN vuông góc EM tại M
Mặt khác: ACN = 90 độ (góc nt chắn nửa đt)
=> AE vuông góc CN tại C
Xét tam giác ANE có : NC và EM là các đường cao
=> B là trực tâm tam giác ANE
=> AB vuông góc NE (t/c trực tâm tam giác)
b) Ta có M là trung điểm AN (t/c đối xứng)
và M cũng là trung điểm EF (t/c đói xứng)
Do đó tứ giác AENF là hính bình hành
=> FA song song NE
Mà NE vuông góc AB (cmt)
=> FA vuông góc AB tại A thuộc (O)
Vậy FA là tiếp tuyến của đt (O)
c)Ta có M là trung điểm AN (t/c đối xứng)
AN vuông góc BF tại M (góc AMB =90 độ)
=> BF là đường trung trực của AN
Xét tam giác AFB và tam giác NFB có
1/ BF cạnh chung
2/ FA = FN (t/c đ trung trực)
3/ BA = BN (t/c đ trung trực)
=> tam giác AFB = tam giác NFB
=> góc FAB = góc FNB
Mà FAB = 90 độ (cmt)
=> góc FNB bằng 90 độ
=> FN vuông góc với BN tại N thuộc (B;BN)
Mà BN = AB
=> FN là tiếp tuyến cửa đt (B;AB)

14 tháng 1 2017

d) tam giac NBF vuong tai N co NB2=BM*BF(HE THUC LUONG trong tam giac vuong) (1)

ma NB2+NF2=BF2

=> NB2=BF2-NF2(2)

(1;2)=> BM*BF=BF2-NF2(=NB2)

23 tháng 6 2017

Đường tròn

11 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MA = MN (tính chất đối xứng tâm)

ME = MF (tính chất đối xứng tâm)

Tứ giác AENF có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Suy ra: AF // NE

Mà NE ⊥ AB (chứng minh trên)

Suy ra: AF ⊥ AB tại A

Vậy FA là tiếp tuyến của đường tròn (O).

26 tháng 12 2020

Em vừa giải ra, nhưng hy vọng tìm được cách đơn giản hơn.

Cách của em:

a+ b)

Dễ có AN là đường trung trực FE nên AF = FE.

^FAE=180o - 2. ^AEF = 180o - 2. ^CEB = 2. ^EBC

Dễ có BM là đường trung trực AN nên BN = BA.

Do đó tam giác NBA cân tại B.

Vậy BM là đường trung trực đồng thời là phân giác.

Vậy ^EBC = ^ABE suy ra ^FAE = 2. ^EBC = ^EBC +^ABE = ^CBA.

Ta có: ^FAB = ^FAE+^CAB=^CBA +^CAB = 90o

Vậy FA là tiếp tuyến (O) (1)

Mặt khác tứ giác FNEA có FM = ME; MN = MA nên là hình bình hành.

Vậy FA // NE (2)

Từ (1) và (2) suy ra NE vuông góc với AB.

c) BM là đường trung trực AN nên BF là đường trung trực AN

Có ngay FN = FA \(\Rightarrow\widehat{FNA}=\widehat{FAN}\)

Dễ chứng minh $\Delta MBN = \Delta MBA$ nên $\widehat{ANB}=\widehat{NAB}$

$\widehat{FNB}=\widehat{FAN}+\widehat{NAB}=\widehat{FAB}=90^o$

d) $BF^2-FN^2 =BN^2 = BM \cdot BF$

NV
26 tháng 12 2020

Em nghĩ quá phức tạp :D

\(\widehat{AMB}\) và \(\widehat{ACB}\) đều là góc nội tiếp chắn nửa đường tròn nên AC và BM là 2 đường cao của tam giác ABN

\(\Rightarrow\) E là trực tâm \(\Rightarrow NE\) là đường cao thứ 3 \(\Rightarrow NE\perp AB\)

3 tháng 8 2021

Tham khảo :

3 tháng 8 2021

23 tháng 8 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác ABN ta có: AN ⊥ BM và AM = MN

Suy ra tam giác ABN cân tại B

Suy ra BA = BN hay N thuộc đường tròn (B; BA)

Tứ giác AFNE là hình bình hành nên AE // FN hay FN // AC

Mặt khác: AC ⊥ BN (chứng minh trên)

Suy ra: FN ⊥ BN tại N

Vậy FN là tiếp tuyến của đường tròn (B; BA)

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xet ΔNAB có

AC.BM là các đường cao

AC cắt BM tại E

Do đó: E là trực tâm

=>NE vuông góc với AB

b: Xét tứ giác NEAF có

M là trung điểm chung của NA và EF

nên NEAF là hình bình hành

=>NE//AF

=>AF vuông góc với AB

=>FA là tiêp tuyến của (O)

20 tháng 1 2021

A F N M O C B E

a) Xét tam giác AMB có :

MO = OA = OB ( =bk )

\(\Rightarrow MO=\frac{1}{2}AB\)

=> Tam giác AHB vuông tại M

=> EM là đường cao của tam giác ANE

- Xét tam giác ACB có : OC = OB = OA ( =bk )

\(\Rightarrow OC=\frac{1}{2}AB\Rightarrow\Delta ACB\)vuông tại C

=> NC là đường cao của tam giác ANE

=> B là giao điểm 3 đường cao của tam giác ANE

=> AB là đường cao của tam giác ANE

Vậy : \(NE\perp AB\left(đpcm\right)\)

b) Xét 2tam giác : MAF và MNE

                       Có : MA = MN (gt) 

                              MF = ME ( gt )

                              ^AMF = ^NME ( đối đỉnh )

do đó : \(\Delta MAF=\Delta NME\left(c-g-c\right)\)

=> ^AFM = ^NEM

Mà 2 góc ^AFM và ^NEM có vị trí so le 

=> AF // NE

Mà : \(NE\perp AB\)( c/m câu a ) => \(AF\perp AB\)tại A

Vậy : FA là tiếp tuyến đường tròn (O) ( đpcm )

c) Ta có : ^AMB = 90^o => \(FB\perp AN\)

                      MA = MB

=> FB là đường trung trực của AN

=> BN = BA ; FN = FA

- Xét 2 tam giác : ABF và NBF có : BN = BA ; FN = FA

FB chung

\(\Rightarrow\Delta ABF=\Delta NBF\left(c-c-c\right)\)

=> ^BNF = ^BAF = 90^o

\(\Rightarrow BN\perp FN\)tại B mà BN = BA

Vậy : FN là tiếp tuyến của đường tròn ( B ; BA ) ( đpcm )