Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Ta có: CD=CM+MD
nên CD=CA+DB
b: Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{180^0}{2}=90^0\)
1: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COM+góc DOM=1/2(góc MOA+góc MOB)
=>góc COD=1/2*góc AOB=90 độ
2: CD=CM+MD
mà CM=CA và MD=DB
nên CD=CA+DB
3: AC*BD=CM*MD
Xét ΔOCD vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2 không đổi
1: góc AKP+góc AHP=180 độ
=>AKPH nội tiếp
2: góc KAC=1/2*sđ cung KC
góc OMB=góc CBK(MH//CB)
=>góc OMB=góc KAC
a: Xét tứ giác ACMO có
\(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\)
=>ACMO là tứ giác nội tiếp
=>A,C,M,O cùng thuộc một đường tròn
b: Xét (O) có
CA,CM là các tiếp tuyến
Do đó: CA=CM và OC là phân giác của góc AOM
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
OC là phân giác của góc AOM
=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)
Ta có: OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{AOM}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
Xét ΔOCD vuông tại O có OM là đường cao
nên \(OM^2=MC\cdot MD\)
mà MC=CA và MD=DB
nên \(AC\cdot BD=OM=R^2\) không đổi
c: Gọi N là trung điểm của CD
Xét hình thang ACDB(AC//DB) có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
=>ON\(\perp\)AB
Vì ΔCOD vuông tại O có N là trung điểm của CD
nên N là tâm đường tròn ngoại tiếp ΔCOD
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔCOD
a) Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(gt)
CA là tiếp tuyến có A là tiếp điểm(gt)
Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: DM=DB(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CM+MD=CD(M nằm giữa C và D)
mà CM=CA(cmt)
mà DM=DB(cmt)
nên AC+BD=CD(đpcm)
b) Gọi G là tâm của đường tròn đường kính CD
Xét (G) có CD là đường kính
nên G là trung điểm của CD
Ta có: AC⊥AB(AC là tiếp tuyến của (O))
BD⊥BA(BD là tiếp tuyến của (O))
Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)
Xét tứ giác ACDB có AC//DB(cmt)
nên ACDB là hình thang có hai đáy là AC và DB(Định nghĩa hình thang)
Xét (O) có AB là đường kính
nên O là trung điểm của AB
Hình thang ACDB(AC//DB) có
G là trung điểm của cạnh bên CD(cmt)
O là trung điểm của cạnh bên AB(cmt)
Do đó: GO là đường trung bình của hình thang ACDB(Định nghĩa đường trung bình của hình thang)
⇒GO//AC//BD và \(GO=\dfrac{AC+BD}{2}\)(Định lí 4 về đường trung bình của hình thang)
Ta có: GO//AC(cmt)
AC⊥AB(AC là tiếp tuyến của (O))
Do đó: GO⊥AB(Định lí 2 từ vuông góc tới song song)
hay GO⊥OA
Xét (O) có
CA là tiếp tuyến có A là tiếp điểm(gt)
CM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{AOM}\)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{DOM}=\dfrac{1}{2}\cdot\widehat{MOB}\)
Ta có: \(\widehat{COM}+\widehat{DOM}=\widehat{COD}\)(tia OM nằm giữa hai tia OC và OD)
hay \(\widehat{COD}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)
nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)
mà OG là đường trung tuyến ứng với cạnh huyền CD(G là trung điểm của CD)
nên \(OG=\dfrac{CD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(CG=\dfrac{CD}{2}\)(G là trung điểm của CD)
nên OG=CG
⇔OG=R'
hay O∈(G)
Xét (G) có
O∈(G)
AO⊥GO tại O(cmt)
Do đó: AO là tiếp tuyến của (G)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
⇔AB là tiếp tuyến của đường tròn có đường kính CD(đpcm)
a. Theo tc 2 tt cắt nhau: \(AC=AM;BM=BD\)
\(\Rightarrow AC+BD=AM+BM=AB\)
b. \(\left\{{}\begin{matrix}\widehat{AMO}=\widehat{ACO}=90^0\\AC=AM\\AO.chung\end{matrix}\right.\Rightarrow\Delta AOC=\Delta AOM \)
\(\Rightarrow\widehat{COA}=\widehat{AOM}=\dfrac{1}{2}\widehat{COM}\)
\(\left\{{}\begin{matrix}\widehat{ODB}=\widehat{OMB}=90^0\\BD=MB\\OB.chung\end{matrix}\right.\Rightarrow\Delta OBD=\Delta OBM\\ \Rightarrow\widehat{DOB}=\widehat{BOM}=\dfrac{1}{2}\widehat{DOM}\)
\(\Rightarrow\widehat{AOB}=\widehat{AOM}+\widehat{BOM}=\dfrac{1}{2}\left(\widehat{COM}+\widehat{DOM}\right)=\dfrac{1}{2}\cdot180^0=90^0\\ \Rightarrow\Delta OAB\text{ vuông tại O}\)
c. Áp dụng HTL: \(AM\cdot MB=OM^2=R^2\)
Mà \(CD=2R;AM=AC;BM=BD\)
Vậy \(AC\cdot BD=AM\cdot BM=R^2=\left(\dfrac{CD}{2}\right)^2=\dfrac{CD^2}{4}\)