Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) Chứng minh tứ giác BHIK là hình thoi.
Ta có A B C ^ = A N C ^ (góc nội tiếp cùng chắn cung A C ⏜ )
Mà A M C ^ = A H I ^ (góc nội tiếp cùng chắn cung I C ⏜ )
⇒ A B C ^ = I K C ^ Mà 2 góc này ở vị trí đồng vị nên H B / / I K (1)
+ Chứng minh tương tự phần 1 ta có tứ giác AMHI nội tiếp
A N C ^ = I K C ^ (góc nội tiếp cùng chắn cung A I ⏜ )
Ta có A B C ^ = A M C ^ (góc nội tiếp cùng chắn cung A C ⏜ )
⇒ A B C ^ = A H I ^ Mà 2 góc này ở vị trí đồng vị nên B K / / H I (2)
Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.
Mặt khác AN, CM lần lượt là các tia phân giác của các góc A và C trong tam giác ABC nên I là giao điêm 3 đường phân giác, do đó BI là tia phân giác góc B
Vậy tứ giác BHIK là hình thoi (dấu hiệu nhận biết hình thoi).
a) Tứ giác MNKC nội tiếp do bốn đỉnh đều thuộc đường tròn đường kính KC.
b) Ta có \(\Delta IMK\sim\Delta INC(g.g)\) nên \(IM.IC=IN.IK\).
c) D là trực tâm của tam giác ICK nên \(\widehat{IEK}=90^o\) , mà IK là đường kính của (O) nên E thuộc (O).
Các tứ giác NDEK, NDMI nội tiếp nên \(\widehat{MND}=\widehat{MID}=90^o-\widehat{ICK}=\widehat{DKE}=\widehat{DNE}\). Suy ra NC là phân giác của góc MNE.
d) Theo phương tích ta có \(DM.DK=DA.DB\). Áp dụng bđt AM - GM:
\(DM.DK=DA.DB\le\dfrac{\left(DA+DB\right)^2}{4}=\dfrac{AB^2}{4}\) không đổi.
Đẳng thức xảy ra khi và chỉ khi DA = DB, tức \(M\equiv I\).
Vậy...
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
a: góc AMC=góc AHC=90 độ
=>AMHC nội tiếp
b: Đề sai rồi bạn