K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

Xét \(\Delta COM\)và \(\Delta CED\)có:

     \(\widehat{COM}=\widehat{CED}=90^0\)

     \(\widehat{ECD}\): góc chúng

Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)

\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)

\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)

\(=R^2+R^2=2R^2\)(2)

Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)

3 tháng 2 2020

điểm N lm j z bạn

1 tháng 9 2019

a, Chú ý:  K M B ^ = 90 0 và K E B ^ = 90 0 => ĐPCM

b, ∆ABE:∆AKM (g.g)

=>  A E A M = A B A K

=> AE.AK = AB.AM = 3 R 2  không đổi

c, ∆OBC đều 

=>  B O C ⏜ = 60 0 => S =  πR 2 6