K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

Đề không nói rõ là đoạn thẳng OC cắt đường tròn hay đường thẳng OC. Vì nếu là đường thăng thì sẽ có hai điểm D. Ta coi D là giao điểm của đoạn thẳng OC với đường tròn, nếu D là giao của tia đối của tia OC với đường tròn thì chỉ việc cộng thêm 2R.

Tam giác OAB có \(OA=OB=AB=R\to\Delta OAB\) đều. Suy ra \(\angle OBA=60^{\circ}.\) Do \(BC=BA=OB=R\to\Delta BCO\)  cân ở B. Vậy theo tính chất góc ngoài tam giác \(\angle OBA=\angle BOC+\angle BCO=2\angle BCO\to\angle BCO=\frac{60^{\circ}}{2}=30^{\circ}.\) Vậy góc ACD bằng 30 độ.

Kẻ OH vuông góc với AB. Vì tam giác OAB đều nên \(OH=\frac{\sqrt{3}}{2}AB=\frac{\sqrt{3}}{2}R=\frac{3\sqrt{3}}{2}.\) Tam giác OHC vuông ở H có góc đỉnh C bằng 30 độ nên \(OH=\frac{1}{2}OC\to OC=2\times\frac{3\sqrt{3}}{2}=3\sqrt{3}.\)  Mà \(OD=R=3\to CD=OC-OD=3\sqrt{3}-3.\)
 

Đáp án:

a) góc ACD = 60o60o

b) CD=3+3√3

Giải thích các bước giải:

a) Vì AB=OA=OB nên tam giác OAB là tam giác đều

⇒ góc OAB=góc OBA= 60o60o

⇒ góc OBC=180o180o -60o60o=120o120o

Xét tam giác OBC có OC=AB=OB ⇒ tam giác OBC cân tại B

⇒ góc BOC= góc BCO

Mà góc BOC+góc BCO=180o180o -120o120o=60o60o

⇒ góc BCO hay góc ACD bằng 60o60o

b) Kẻ OH ⊥AB

ta có: OH= 3√323√32

HC=HB+BC= 3232 +3=9292

⇒ OC= 2√OH2+HC2OH2+HC22 =3√3

⇒ CD=CO+OC=3+3√3

28 tháng 6 2021

tại sao OA = AB = OB

a) Xét (O) có

CD là dây cung(C,D∈(O))

B là điểm chính giữa của \(\stackrel\frown{CD}\)(gt)

Do đó: \(\stackrel\frown{CB}=\stackrel\frown{BD}\)

\(sđ\widehat{CB}=sđ\widehat{BD}\)(1)

Xét (O) có 

\(\widehat{BMD}\) là góc nội tiếp chắn cung BD(gt)

nên \(\widehat{BMD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BD}\)(Định lí góc nội tiếp)(2)

Xét (O) có 

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC(gt)

nên \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\widehat{CB}\)(Định lí góc nội tiếp)(3)

Từ (1), (2) và (3) suy ra \(\widehat{BMD}=\widehat{BAC}\)(đpcm)

 

31 tháng 1 2021

thanks nhìu nha leuleu

21 tháng 7 2023

A B C O D E

a/

\(sđ\widehat{ACO}=\dfrac{1}{2}\left(sđcungAD-sđcungBE\right)\) (góc có đỉnh ngoài hình tròn)

\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđcungAD-\dfrac{1}{2}sđcungBE\) (1)

Ta có

\(sđ\widehat{AOD}=sđcungAD\) (Góc có đỉnh là tâm đường tròn)

\(\Rightarrow\dfrac{1}{2}sđcungAD=\dfrac{1}{2}sđ\widehat{AOD}\) (2)

Ta có

BC = OB = R => tg BOC cân tại B \(\Rightarrow\widehat{ACO}=\widehat{BOE}\) (góc ở đáy tg cân)

\(sđ\widehat{BOE}=sđcungBE\) (Góc có đỉnh là tâm đường tròn)

\(\Rightarrow\dfrac{1}{2}sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{BOE}=\dfrac{1}{2}sđcungBE\) (3)

Thay (2) và (3) vào (1)

\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{AOD}-\dfrac{1}{2}sđ\widehat{ACO}\)

\(\Rightarrow2.sđ\widehat{ACO}=sđ\widehat{AOD}-sđ\widehat{ACO}\)

\(\Rightarrow sđ\widehat{AOD}=3.sđ\widehat{ACO}\)

b/

Ta có

AB = R = OA = OB => tg OAB là tg đều

\(\Rightarrow\widehat{OAB}=\widehat{OBA}=60^o\)

\(\Rightarrow\widehat{OBC}=180^o-\widehat{OBA}=180^o-60^o=120^o\)

Xét tg cân BOC có

\(\widehat{BCO}+\widehat{BOC}=180^o-\widehat{OBC}=180^o-120^o=60^o\)

Mà \(\widehat{BCO}=\widehat{BOC}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{BCO}=\widehat{BOC}=30^o\)

Xét tg AOC có

\(\widehat{AOC}=180^o-\left(\widehat{OAB}+\widehat{BOC}\right)=180^o-\left(60^o+30^o\right)=90^o\)

=> tg AOC vuông tại O

AC = AB + BC = 2R

\(\Rightarrow CO=\sqrt{AC^2-OA^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

 

24 tháng 4 2022

thiếu đề hay sao á

24 tháng 4 2022

À vâng mik muốn hỏi cách vẽ hình thôi ạ