Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900
Vậy I thuộc đường tròn đường kính OC cố định (đpcm).
b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB
Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).
c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC
Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)
Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.
d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.
Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)
Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).
a) Tam giác vuông ABO và ACO có chung cạnh huyền AO nên O, B, A, C cùng thuộc đường tròn đường kính AO.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có AB = AC nên ABC là tam giác cân tại A.
Lại có AO là phân giác nên đồng thời là đường trung tuyến. Vậy thì AO đi qua H hay A, H, O thảng hàng.
Theo liên hệ giữa góc ở tâm và góc nội tiếp cùng chắn một cung, ta có \(\widehat{KDC}=\frac{\widehat{BOC}}{2}\)
Theo tính chất hai tiếp tuyến cắt nhau ta cũng có: \(\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Suy ra \(\widehat{KDC}=\widehat{COA}\)
Vậy thì \(\Delta KDC\sim\Delta COA\left(g-g\right)\Rightarrow\frac{CK}{AC}=\frac{CD}{AO}\Rightarrow AC.CD=CK.AO\)
c) Ta thấy \(\widehat{ABN}=\widehat{NBC}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung chắn các cung bằng nhau)
Vậy nên BN là phân giác góc ABC.
Lại có AN là phân giác góc BAC nên N là tâm đường tròn nội tiếp tam giác ABC.
d) Gọi J là trực tâm tam giác ABC. Ta có ngay \(JC\perp AB;BJ\perp AC\)
Vậy thì BO // JC ; BJ // OC
Suy ra tứ giác JBOC là hình bình hành.
Lại có OB = OC nên JBOC là hình thoi.
Từ đó ta có JB = JC = OB = OC = R.
Vậy khi A di chuyển trên tia By cố định thì BJ = R hay J thuộc đường tròn tâm B, bán kính R.
a,b,c làm như bạn trên nhé. Tuy nhiên câu d, cách của bạn đó làm dài và k hay, mình làm cách khác:
Mình mượn tạm hình vẽ của bạn đó luôn :))))
Gọi I là trung điểm của AB. vì dây AB cố định (gt) => I cố định
=> \(OI\perp AB\)(Quan hệ vuông góc giữa đường kính và dây cung) => \(\widehat{OIA}=90^o\)(1)
Do \(AM\perp CD\)tại M (gt) => \(\widehat{OMA}=90^o\)(2)
Từ (1) và (2) => Tứ giác OMIA là tứ giác nội tiếp (DHNB) => \(\widehat{IMN}=\widehat{OAI}=\widehat{OAB}\)(cùng bù với \(\widehat{OMI}\)) (3)
Lại có: \(\widehat{OIB}=\widehat{ONB}=90^o\)=> tứ giác OINB là tứ giác nội tiếp(DHNB) => \(\widehat{INO}=\widehat{INM}=\widehat{OBI}\)(Cùng chắn \(\widebat{OI}\)) = \(\widehat{OBA}\)(4)
\(\Delta OAB\)Cân tại O do OA=OB=R => \(\widehat{OAB}=\widehat{OBA}\)(t/c) (5)
Từ (3),(4) và (5) => \(\widehat{INM}=\widehat{IMN}\Rightarrow\Delta IMN\)cân tại I (DHNB) => IM =IN (đ/n) (6)
Do CMHA nội tiếp (cmt) => \(\widehat{IHM}=\widehat{ACM}=\widehat{ACO}\)(Cùng bù với \(\widehat{AHM}\)) (7)
Ta có: \(\widehat{IMH}=\widehat{NMH}-\widehat{IMN}\)mà \(\widehat{NMH}=\widehat{CAH}=\widehat{CAB}\)(Cùng bù \(\widehat{CMH}\))
\(\widehat{IMN}=\widehat{INM}=\widehat{INO}=\widehat{IBO}=\widehat{ABO}=\widehat{OAB}\)(CMT) => \(\widehat{IMH}=\widehat{CAB}-\widehat{OAB}=\widehat{CAO}\)(8)
Mặt khác \(\Delta OAC\)Cân tại O do OA=OC=R => \(\widehat{CAO}=\widehat{ACO}\)(9)
Từ (7),(8) và (9) => \(\widehat{IHM}=\widehat{IMH}\Rightarrow\Delta IMH\)cân tại I (DHNB) => IM = IH (đ/n) (10)
Từ (6) và (10) => IM = IH = IN => I là tâm đường tròn ngoại tiếp \(\Delta HMN\)(I cố định) => Đpcm
a) Xét tứ giác CMHA có: ^CMA=^CHA=900 => Tứ giác CMHA nội tiếp đường tròn
Dựa theo tính chất đừng trung tuyến trong tam giác vuông, ta tìm được tâm G của đường tròn ngoại tiếp tứ giác CMHA là trung điểm của AC.
b) Do tứ giác CMHA nội tiếp (G) => ^ACM+^AHM=1800. Mà ^AHM+^MHB=1800
=> ^ACM=^MHB hay ^ACD=^MHB (1)
Ta thấy tứ giác ACBD nội tiếp (O) => ^ACD=^ABD (2)
Từ (1) và (2) => ^MHB=^ABD. Mà 2 góc này nằm ở vị trí so le trg nên HM // BD (3)
Ta có: Đương tròn (O) có đường kính CD, B thuộc cung CD => ^CBD=900
=> BD vuông góc với BC (4)
Từ (3) và (4) => HM vuông góc với BC (đpcm).
c) Ta có tứ giác CMHA nội tiếp (G) => ^CAH+^CMH=1800. Mà ^CMH+^HMN=1800
=> ^CAH=^HMN hay ^CAB=^HMN
Chứng minh tương tự phần a ta được tứ giác CHNB nội tiếp đường tròn
Từ đó suy ra ^CNH=^CBH hay ^MNH=^CBA
Xét \(\Delta\)HMN và \(\Delta\)CAB: ^CAB=^HMN; ^MNH=^CBA (cmt)
=> \(\Delta\)HMN ~ \(\Delta\)CAB (g.g) (đpcm).
d) Gọi giao điểm của đường tròn ngoại tiếp tâm I \(\Delta\)HMN với AM và AB lần lượt là R và L
Dễ thấy tứ giác HRMN nội tiếp (I) => ^HNM+^HRM=1800. Mà ^ARH+^HRM=1800
=> ^HNM=^ARH hay ^CNH=^ARH (^HNM=^CNH)
Tứ giác CMHA nội tiếp (G) => ^MAH=^MCH hay ^RAH=^NCH
Xét \(\Delta\)AHR và \(\Delta\)CHN: ^CNH=^ARH; ^NCH=^RAH => \(\Delta\)AHR ~ \(\Delta\)CHN (g.g)
=> \(\frac{AH}{CH}=\frac{HR}{HN}\)(5)
Dễ thấy: ^AHR=^CHN => ^AHC+^CHR=^CHR+^RHN => ^AHC=^RHN
Mà ^AHC=900 => ^RHN=900
Tứ giác CHNB nội tiếp đường tròn => ^HBN=^HCN hay ^LBN=^HCN
Lại có: Tứ giác HMLN nội tiếp I => ^HLN=^HMN => 1800-^HLN=1800-^HMN
=> ^NLB=^HMC
Theo t/c góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung => HMC=^NHC=> ^NLB=^NHC
Xét \(\Delta\)CHN và \(\Delta\)BLN: ^HCN=^LBN; ^NHC=^NLB (cmt) => \(\Delta\)CHN ~ \(\Delta\)BLN (g.g)
=> \(\frac{BL}{CH}=\frac{LN}{HN}\)(6)
Xét (I) có đường kính HL; R thuộc cung HL => ^HRL=900 . Tương tự ta có: ^HNL=900
Xét tứ giác HRLN: ^HRL=^HNL=^RHN=900 (cmt) => Tứ giác HRLN là hình chữ nhật
=> HR=LN (2 cạnh đối) (7)
Từ (5); (6) và (7) => \(\frac{AH}{CH}=\frac{BL}{CH}\)=> \(AH=BL\)
I là trung điểm HL => IH=IL => IH+AH=IL+BL => AI=BI => I là trung điểm của AB
Do dây cung AB cố định => Trung điểm I của AB là điểm cố định.
Mà I là tâm đường tròn ngoại tiếp \(\Delta\)HMN
Suy ra tâm đường tròn ngoại tiếp \(\Delta\)HMN là điểm cố định khi C di động trên cung lớn AB (đpcm).