Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOSB có OS=OB=BS(=R)
nên ΔOSB đều
=>\(\widehat{SBO}=60^0\)
Xét (O) có
MS,MQ là các tiếp tuyến
Do đó: MS=MQ
=>M nằm trên đường trung trực của SQ(1)
ta có: OS=OQ
=>O nằm trên đường trung trực của SQ(2)
Từ (1) và (2) suy ra MO là đường trung trực của SQ
=>MO\(\perp\)SQ tại H và H là trung điểm của SQ
Ta có: ΔSOB đều
mà SH là đường cao
nên H là trung điểm của OB
Xét tứ giác OSBQ có
H là trung điểm chung của OB và SQ
=>OSBQ là hình bình hành
Hình bình hành OSBQ có OS=OQ
nên OSBQ là hình thoi
=>\(\widehat{SBQ}+\widehat{OSB}=180^0\)
=>\(\widehat{SBQ}=120^0\)
Xét ΔBSQ có \(cosSBQ=\dfrac{BS^2+BQ^2-SQ^2}{2\cdot BQ\cdot BS}\)
=>\(\dfrac{R^2+R^2-SQ^2}{2\cdot R\cdot R}=cos120=-\dfrac{1}{2}\)
=>\(2R^2-SQ^2=-R^2\)
=>\(SQ^2=3R^2\)
=>\(SQ=R\sqrt{3}\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
=>\(\widehat{ACB}=90^0\)
Ta có: ΔOAC cân tại O(OA=OC)
mà OH là đường trung tuyến
nên OH\(\perp\)AC và OH là tia phân giác của góc AOC
Ta có: OH\(\perp\)AC(cmt)
AC\(\perp\)CB tại C(Do ΔACB vuông tại C)
Do đó: OH//BC
b:
OH là phân giác của góc AOC
=>\(\widehat{AOH}=\widehat{COH}\)
mà M\(\in\)OH
nên \(\widehat{AOM}=\widehat{COM}\)
Xét ΔOCM và ΔOAM có
OC=OA
\(\widehat{COM}=\widehat{AOM}\)
OM chung
Do đó: ΔOCM=ΔOAM
=>\(\widehat{OCM}=\widehat{OAM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{OAM}=90^0\)
=>OA\(\perp\)MA tại A
=>MA là tiếp tuyến tại A của (O)