K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

a/ Ta có

^AIB=90 (góc nt chắn nửa đường tròn) => BI vuông góc AE

d vuông góc với AB tại M

=> M và I cùng nhìn BE dưới 1 góc 90 => M; I cùng nằm trên đường tròn đường kính BE => MBEI là tứ giác nội tiếp

b/ Xét tam giác vuông MEA và tam giác vuông IEH có ^AEM chung => tg MEA đồng dạng với tg IEH

d/ Xét tg ABE có

BI vuông góc AE

ME vuông góc AB

=> H là trực tâm cuat tg ABE

Ta có ^AKB =90 (góc nt chắn nửa đường tròn => AK vuông góc với BE

=> AK đi qua H (trong tam giác 3 đường cao đồng quy

=> Khi E thay đổi HK luôn đi qua A cố định


 

20 tháng 5 2016

O A B M C D E K I H

Cô hướng dẫn nhé :)

a. Ta thấy góc MBE = góc BIE = 90 độ nên từ giác MBEI nội tiếp đường tròn đường kính BE, vậy tâm là trung điểm BE.

b. \(\Delta IEH\sim\Delta MEA\left(g-g\right)\) vì có góc EIH = góc EMA = 90 độ và góc E chung.

c. Từ câu b ta có : \(\frac{IE}{EM}=\frac{EH}{EA}\Rightarrow EH.EM=IE.EA\) Vậy ta cần chứng minh \(EC.ED=IE.EA\)

Điều này suy ra được từ việc chứng minh \(\Delta IED\sim\Delta CEA\left(g-g\right)\)

Hai tam giác trên có góc E chung. góc DIE = góc ACE (Tứ giác AIDC nội tiếp nên góc ngoài bằng góc tại đỉnh đối diện) 

d. Xét tam giác ABE, ta thấy do I thuộc đường trong nên góc AIB = 90 độ. Vậy EM và BI là các đường cao, hay H là trực tâm của tam giác ABE. Ta thấy AK vuông góc BE, AH vuông góc BE, từ đó suy ra A, H ,K thẳng hàng. Vậy khi E thay đổi HK luôn đi qua A.

Tự mình trình bày để hiểu hơn nhé . Chúc em học tốt ^^ 

ΔKBO=ΔKCO

=>KB=KC

=>KO là trung trực của BC

ΔKCO đồng dạng với ΔCIO

=>OC/OI=OK/OC

=>OC^2=OI*OK

=>OI*OK=ON^2

=>OI/ON=ON/OK

=>ΔOIN đồng dạng với ΔONK

=>gócc ONI=góc OKN

Tương tự, ta có: OI/OM=OM/OK

=>ΔMKO đồng dạng với ΔIMO

=>góc MKO=góc IMO=góc INO

=>góc MKD=góc NKD

=>K,M,N thẳng hàng

=>K luôn thuộc MN

Từ điểm A nằm ngoài đường tròn (O;R) vẽ một đường thẳng d vuông góc với OA tại A . Gọi M là một điểm tùy ý trên d . Vẽ tiếp tuyến MB và MC với (O;R) ( B,C là hai tiếp điểm ) . OM cắt BC tại Ha) chứng minh ; 5 điểm O,B,M,A,C cùng nằm trên 1 đường tròn b) Gọi D là một điểm trên cung nhỏ BC của đường tròn (O) (cung DB < cung DC ). Đường thẳng DH cắt đường...
Đọc tiếp

Từ điểm A nằm ngoài đường tròn (O;R) vẽ một đường thẳng d vuông góc với OA tại A . Gọi M là một điểm tùy ý trên d . Vẽ tiếp tuyến MB và MC với (O;R) ( B,C là hai tiếp điểm ) . OM cắt BC tại H

a) chứng minh ; 5 điểm O,B,M,A,C cùng nằm trên 1 đường tròn 

b) Gọi D là một điểm trên cung nhỏ BC của đường tròn (O) (cung DB < cung DC ). Đường thẳng DH cắt đường tròn (O) tại điểm thứ 2 là K . Chứng tỏ ; MO là phân giác của góc DMK 

c) chứng tỏ ; Khi M di động trên d thì BC luôn đi qua một điểm cố định và H di động trên một đường cố định 

d) Cho biêt1 OA= 3R . TÌm vị trí điểm M trên d sao cho tứ giác OBMC có diện tích nhỏ nhất. 

                                                                ( siêu khó :)) . Giải dùm )

0