K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1

a.

Do AM là tiếp tuyến của (O) \(\Rightarrow AM\perp OA\Rightarrow\widehat{OAM}=90^0\)

\(\Rightarrow\) 3 điểm O, A, M cùng thuộc đường tròn đường kính OM (1)

Tương tự, do MC là tiếp tuyến của (O) \(\Rightarrow\widehat{OCM}=90^0\)

\(\Rightarrow\) 3 điểm O, C, M cùng thuộc đường tròn đường kính OM (2)

(1);(2) \(\Rightarrow\) 4 điểm O, A, M, C cùng thuộc đường tròn đường kính OM

b.

Do M là giao điểm 2 tiếp tuyến của (O) tại A và C \(\Rightarrow MA=MC\) (t/c hai tiếp tuyến cắt nhau)

Lại có \(OA=OC=R\)

\(\Rightarrow OM\)  là trung trực của AC

\(\Rightarrow OM\perp AC\) tại I

c.

Do AB là đường kính và D thuộc đường tròn \(\Rightarrow\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ADB}=90^0\) hay \(AD\perp BM\)

Áp dụng hệ thức lượng trong tam giác vuông BAM với đường cao AD:

\(AM^2=MD.MB\) (3)

Theo c/m câu b ta có \(AI\perp MO\), áp dụng hệ thức lượng trong tam giác vuông OAM với đường cao AI:

\(AM^2=MI.MO\) (4)

(3);(4) \(\Rightarrow MA^2=MI.MO=MD.MB\)

d.

Áp dụng hệ thức lượng trong tam giác vuông OAM với đường cao AI:

\(OA^2=OI.OM\)

Mà \(OA=OB=R\Rightarrow OB^2=OI.OM\Rightarrow\dfrac{OI}{OB}=\dfrac{OB}{OM}\)

Xét hai tam giác BOI và MOB có:

\(\left\{{}\begin{matrix}\dfrac{OI}{OB}=\dfrac{OB}{OM}\left(cmt\right)\\\widehat{MOB}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOI\sim\Delta MOB\left(c.g.c\right)\)

\(\Rightarrow\widehat{OIB}=\widehat{OBM}\)

NV
5 tháng 1

loading...

29 tháng 7 2021

haha em không biết câu trả lời em mới học lớp 6

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
29 tháng 12 2021

a: Xét tứ giác OAMC có 

\(\widehat{OAM}+\widehat{OCM}=180^0\)

Do đó: OAMC là tứ giác nội tiếp

2 tháng 1

m có h.vẽ ko

 

a: Xét tứ giác OACM có

\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)

=>OACM là tứ giác nội tiếp

=>O,A,C,M cùng thuộc một đường tròn

b: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM

=>C nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OC là đường trung trực của AM

=>OC\(\perp\)AM

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM\(\perp\)MB tại M

Ta có: AM\(\perp\)MB

AM\(\perp\)OC

Do đó: OC//MB

c: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

=>KB\(\perp\)KA tại K

=>AK\(\perp\)BC tại K

Xét ΔABC vuông tại A có AK là đường cao

nên \(BK\cdot BC=BA^2=\left(2R\right)^2=4R^2\)

4 tháng 12 2023

vẽ hình và làm bài trên

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
8 tháng 6 2017

a, HS tự làm

b, Ta có OP ⊥ AM, BMAM => BM//OP

c, chứng minh ∆AOP = ∆OBN => OP=BN

lại có BN//OP do đó OPNB là hình bình hành

d, Ta có ONPI, PMJO mà PM ∩ ON = I => I là trực tâm ∆POJ => JIPO(1)

Chứng minh PAON hình chữ nhật => K trung điểm PO

Lại có  A P O ^ = O P I ^ = I O P ^ => ∆IPO cân tại I => IKPO (2)

Từ (1),(2) => J,I,K thẳng hàng

2 tháng 1 2021

Vì sao A P O ^ = O P I ^ = I O P ^ v bn???