Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé.
a) Ta có góc N = góc B ( góc có cạnh tương ứng vuông góc)
=> tam giác ANO đồng dạng với ABM
=> AN/AB =AO/AM => AM.AN = AB.AO =2R2 = không đổi
b) MN= AM+AN \(\ge2\sqrt{AM.AN}=2\sqrt{2R^2}=2R\sqrt{2}\)
=> MN nhỏ nhất = 2R căn 2 khi AM =AN
c: O là trung điểm của AB
=>OA=OB=R
I là trung điểm của OA
=>OI=OA=0,5R
=>IB=1,5R
ΔIHA đồng dạng với ΔIBM
=>IH/IB=IA/IM
=>IH=3R/8
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')