Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)\cdot cd=\left(c^2+d^2\right)\cdot ab\)
\(\Rightarrow a^2\cdot cd+b^2\cdot cd=c^2\cdot ab+d^2\cdot ab\)
\(\Rightarrow a^2\cdot cd+b^2\cdot cd-c^2\cdot ab-d^2\cdot ab=0\)
\(\Rightarrow\left(a^2\cdot cd-c^2\cdot ab\right)+\left(b^2\cdot cd-d^2\cdot ab\right)=0\)
\(\Rightarrow ac\cdot\left(ad-bc\right)+bd\cdot\left(bc-ad\right)=0\)
\(\Rightarrow ac\cdot\left(ad-bc\right)-bd\cdot\left(ad-bc\right)=0\)
\(\Rightarrow\left(ac-bd\right)\cdot\left(ad-bc\right)=0\)
Tự làm tiếp nhé.......
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)
Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
kinh quá
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Từ giả thiết, ta có \(cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\Leftrightarrow a^2cd+b^2cd-abc^2-abd^2=0\)
<=>\(\left(a^2cd-abc^2\right)+\left(b^2cd-abd^2\right)=0\Leftrightarrow ac\left(ad-bc\right)+bd\left(bc-ad\right)=0\)
<=>\(ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
<=>\(\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}\left(ĐPCM\right)}}\)
^_^
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow\left(a^2cd-abd^2\right)+\left(b^2cd-abc^2\right)=0\)
\(\Leftrightarrow ad\left(ac-bd\right)-bc\left(ac-bd\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (đpcm)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ (1) và (2) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
Từ (3) và (4) => \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
TH2: \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{a+b+b-a}{c+d+d-c}=\frac{2b}{2d}=\frac{b}{d}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{a+b-b+a}{c+d-d+c}=\frac{2a}{2c}=\frac{a}{c}\left(6\right)\)
Từ (5) và (6) => \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)
Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
ta có: (a - b)2 = (a - b)(a - b) = a2 - ab - ab + b2 = a2 - 2ab + b2 (*)
ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{a^2-2ab+b^2}{c^2-2cd+d^2}\)
Áp dụng (*)
=> \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) Hay \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\) hoặc \(\frac{a+b}{c+d}=-\frac{a-b}{c-d}\)
+) \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\) => \(\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}\) => \(\frac{2a}{2c}=\frac{2b}{2d}\) => \(\frac{a}{b}=\frac{c}{d}\)
+) \(\frac{a+b}{c+d}=-\frac{a-b}{c-d}\) => \(\frac{\left(a+b\right)-\left(-\left(a-b\right)\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}\) => \(\frac{2a}{2d}=\frac{2b}{2c}\) => \(\frac{a}{b}=\frac{d}{c}\)
Từ \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)
Áp dụng tính chất của dãy tỉ số bằng nhau a có:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c+d}=\frac{a-b+a+b}{c-d+c+d}=\frac{2a}{2c}=\frac{a}{c}=\frac{a-b-a-b}{c-d-c-d}=-\frac{2b}{-2d}=\frac{b}{d}\)
=>\(\frac{a}{b}=\frac{c}{d}\)
ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(a,b,c,d\ne0;c\ne\pm d\right)\)
\(\Rightarrow\)cd(a2+b2)=ab(c2+d2)\(\Rightarrow\)a2cd+b2cd=abc2+abd2
\(\Rightarrow\)a2cd-abc2=abd2-b2cd \(\Rightarrow\)ac(ad-bc)=bd(ad-bc)
\(\Rightarrow\)(ad-bc) (ac-bd)=0\(\Rightarrow\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\Rightarrow\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)(DPCM)
Ta có\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
<=> cd(a2 + b2) = ab(c2 + d2)
<=> a2cd + b2cd - abc2 - abd2 = 0
<=> (a2cd - abc2) + (b2cd - abd2) = 0
<=> ac(ad - bc) + bd(bc - ad) = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{d}=\frac{b}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\left(\text{đpcm}\right)\)