K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)

\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(b+6\right)\left(a-5\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab-5b+6a-30\)

\(\Leftrightarrow-6a+5b=6a-5b\)

\(\Leftrightarrow5b+5b=6a+6a\)

\(\Leftrightarrow10b=12a\)

\(\Leftrightarrow\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\)

9 tháng 8 2015

a)Ta có:A:B=\(\left(\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\right):\left(\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\right)=\frac{\left(1.3.5...45\right).\left(2.4.6...46\right)}{\left(4.6.8...48\right)\left(5.7.9...49\right)}=\frac{3.2}{47.48.49}

5 tháng 3 2019

A:B thì phải nhân nghịch đảo chứ ?

12 tháng 9 2021

a ) 

Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5

(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7

(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11 

=> a + 16 thuộc BC(5; 7; 11) 

Mà BCNN(5; 7; 11) = 385

=> a + 16 thuộc B(385) = {0; 385; 770; ...}

=> a thuộc {-16; 369; 754;...}

Vì a là số tự nhiên nhỏ nhất

=> a = 369 

b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)

Ta có : 

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

.....................

\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)

Mà \(\frac{2011}{2012}< 1\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)

12 tháng 9 2021

\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)

\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)

\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)

Vậy Biểu thức    \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\) \(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\) 1/ So sánh A và B, A2 và A.B 2/ Chứng minh A<\(\frac{1}{10}\) Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\) \(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\) 1/ So sánh A2 và A.B 2/ Chứng minh A<\(\frac{1}{64}\) Bài 21, Cho...
Đọc tiếp

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

1/ So sánh A và B, A2 và A.B

2/ Chứng minh A<\(\frac{1}{10}\)

Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\)

\(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\)

1/ So sánh A2 và A.B

2/ Chứng minh A<\(\frac{1}{64}\)

Bài 21, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{2499}{2500}\)

Chứng minh A<\(\frac{1}{49}\)

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\)

1/ So sánh A, B, C

2/Chứng minh \(A\cdot C< A^2< \frac{1}{10}\)

3/Chứng minh \(\frac{1}{15}< A< \frac{1}{10}\)

0
2 tháng 7 2016

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}=>\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(=>a\left(b-6\right)+5\left(b-6\right)=a\left(b+6\right)-5\left(b+6\right)\)

\(=>ab-6a+5b-30=ab+6a-5b-30=>-6a+5b=6a-5b=>6a-\left(-6a\right)=5b-\left(-5b\right)\)

\(=>12a=10b=>\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\) (đpcm)

3 tháng 4 2016

a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)

=>              \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)

=>    \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

3 tháng 4 2016

cảm ơn bạn nha