Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)
Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)
Gọi\(\frac{a}{b}=\frac{c}{d}=k\)
Ta có :\(a=kb;c=kd\)
Thay vào ta có :
\(\frac{a+2c}{b+2d}=\frac{kb+2kd}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)(1)
\(\frac{a-2c}{b-2d}=\frac{kb-2kd}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\)(2)
Từ (1) và (2)
\(\Rightarrow\)Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
\(\RightarrowĐPCM\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có \(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)
\(\frac{a-2c}{b-2d}=\frac{bk-2dk}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\)
Ta thấy : \(\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\left(=k\right)\)
Vậy \(\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
\(\frac{a+2c}{b+2d}=\frac{kb+2kd}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)(1)
\(\frac{a-2c}{b-2d}=\frac{kb-2kd}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\)(2)
Từ (1) và (2) => đpcm
Bài làm :
\(\text{Đặt : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)
\(\frac{a-2c}{b-2d}=\frac{bk-2dk}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
=> Điều phải chứng minh
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)và\(\frac{a}{b}=\frac{2c}{2d}=\frac{a-2c}{b-2d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-2c}{b-2d}\left(=\frac{a}{b}\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).
Có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
Do đó
Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có
Do đó
Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có
Do đó
Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có
Do đó
Nên
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có: +) (a+2c) (b+d)= (bk+2.dk) (b+d)
= k.(b+2d) (b+d) (1)
+) (a+c) (b+2d)= (bk+dk) (b+2d)
= k.(b+d) (b+2d) (2)
Từ (1) và (2), ta có: (a+2c) (b+d)= (a+c) (b+2d)
Học tốt nha^^
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
\(\Rightarrow\frac{a+2c}{a-2c}=\frac{b+2d}{b-2d}\)