K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y-z}{2-3-5}=\frac{2}{-6}=-\frac{1}{3}\)

\(\Rightarrow\begin{cases}x=-\frac{2}{3}\\y=-1\\z=-\frac{5}{3}\end{cases}\)

30 tháng 11 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y-z}{2-3-5}=\frac{2}{-6}=-\frac{1}{3}\)

+) \(\frac{x}{2}=\frac{-1}{3}\Rightarrow x=\frac{-2}{3}\)

+) \(\frac{y}{3}=\frac{-1}{3}\Rightarrow y=-1\)

+) \(\frac{z}{5}=\frac{-1}{3}\Rightarrow z=\frac{-5}{3}\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(\frac{-2}{3};-1;\frac{-5}{3}\right)\)

25 tháng 2 2016

\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{\left(y+z-2\right)+\left(z+x-3\right)+\left(x+y+5\right)}=\frac{x+y+z}{2.\left(x+y+z\right)}=\frac{1}{2}\)

=> 2x = y + z - 2

=> 2x + x = x + y + z -2

3x = \(\frac{1}{2}\) - 2

3x = -\(-1\frac{1}{2}\)

x = \(-\frac{1}{2}\)

2y = z + x - 3

=> 2y + y = x + y + z - 3

3y = \(\frac{1}{2}\) - 3

3y = \(-2\frac{1}{2}\)

y = \(-\frac{5}{6}\)

Thay x = \(-\frac{1}{2}\) và y = \(-\frac{5}{6}\) vào x + y + z = \(\frac{1}{2}\) ta được:

\(-\frac{1}{2}-\frac{5}{6}+z=\frac{1}{2}\)

\(z=\frac{1}{2}+\frac{1}{2}+\frac{5}{6}\)

\(z=1\frac{5}{6}\)

Vậy ...

25 tháng 2 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)-\left(2+3-5\right)}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\cdot\frac{x}{y+z-2}=\frac{1}{2}\)

\(\Rightarrow2x=y+z-2\)

\(3x=\left(x+y+z\right)-2=\frac{1}{2}-2=-\frac{1}{2}\)

\(x=-\frac{1}{2}:3=-\frac{1}{6}\)

\(\cdot\frac{y}{z+x-3}=\frac{1}{2}\)

\(\Rightarrow2y=x+z-3\)

\(3y=\left(x+y+z\right)-3=\frac{1}{2}-3=-\frac{5}{6}\)

\(y=-\frac{5}{6}:3=-\frac{5}{18}\)

Ta có:

\(x+y+z=\frac{1}{2}\)

\(\left(-\frac{1}{6}\right)+\left(-\frac{5}{18}\right)+z=\frac{1}{2}\)

\(z-\frac{8}{18}=\frac{9}{18}\)

\(\Rightarrow z=\frac{17}{18}\)

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

Ta có: \(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=x+y+z\)

TH1: \(x+y+z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{x+y+z}{x+y-3+y+z+1+z+x+2}\)

                       \(=\frac{x+y+z}{x+y+y+z+z+x}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow x+y=\frac{1}{2}-z\)

      \(y+z=\frac{1}{2}-x\)

      \(z+x=\frac{1}{2}-y\)

Thay \(x+y-3=\frac{1}{2}-z-3\)

\(\Rightarrow\frac{z}{\frac{1}{2}-z+3}=\frac{1}{2}\)

\(\Rightarrow2z=\frac{1}{2}-z-3\)

\(\Rightarrow2z+z=\frac{1}{2}-3\)

\(\Rightarrow3z=-\frac{5}{2}\Rightarrow z=-\frac{5}{6}\)

Thay \(y+z+1=\frac{1}{2}-x+1\)

\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\)

\(\Rightarrow2x=\frac{1}{2}-x+1\)

\(\Rightarrow2x+x=\frac{1}{2}+1\)

\(\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)

Thay \(z+x+2=\frac{1}{2}-y+2\)

\(\Rightarrow\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2}\)

\(\Rightarrow2y=\frac{1}{2}-y+2\)

\(\Rightarrow2y+y=\frac{1}{2}+2\)

\(\Rightarrow3y=\frac{5}{2}\Rightarrow y=\frac{5}{6}\)

Ta có: \(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)

                \(=\left(\frac{1}{2}+\frac{5}{6}+-\frac{5}{6}-\frac{3}{2}\right)^{2019}\)

                \(=\left[\left(\frac{1}{2}-\frac{3}{2}\right)+\left(-\frac{5}{6}+\frac{5}{6}\right)\right]^{2019}\)

                 \(=\left(-1\right)^{2019}=-1\)

TH2: x + y + z = 0

\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=0\)

\(\Rightarrow x=y=z=0\)

\(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)

    \(=\left(0-\frac{3}{2}\right)^{2019}=\left(-\frac{3}{2}\right)^{2019}\)

Ah! Mk nhầm chút. TH1 là khác 0 nhé!!!!!!

2 tháng 11 2017

Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

\(\frac{3x-y+5z}{x+y+3z}=\frac{3.2k-3k+5.5k}{2k+3k+3.5k}=\frac{6k-3k+25k}{2k+3k+15k}=\frac{28k}{21k}=\frac{4}{3}\)

Kb với minh nha!

2 tháng 11 2017

Đáp án là 7/5 nha bạn.

9 tháng 2 2020

giải hộ mk phần này vs. Bn nào giải được nhanh và trình bày đúng nhất đổi cho 2 k nhoa. Thankiu

4 tháng 3 2020

\(\frac{x+5}{4}=\frac{y+3}{3}=\frac{z+1}{2}\), áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x+5}{4}=\frac{y+3}{3}=\frac{z+1}{2}=\frac{x+5+y+3+z+1}{4+3+2}=\frac{11}{9}\)

rồi tính x,y,z và cho vào M nhé

21 tháng 10 2018

Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !

\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'

Ta có : \(x-24=y\)   hay cũng có thể viết \(x-y=24\)

Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)          (    vì \(x-y=24\) )

\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)

\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)

Vậy \(x=42\)         và                 \(y=18\)