Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{\left(y+z-2\right)+\left(z+x-3\right)+\left(x+y+5\right)}=\frac{x+y+z}{2.\left(x+y+z\right)}=\frac{1}{2}\)
=> 2x = y + z - 2
=> 2x + x = x + y + z -2
3x = \(\frac{1}{2}\) - 2
3x = -\(-1\frac{1}{2}\)
x = \(-\frac{1}{2}\)
2y = z + x - 3
=> 2y + y = x + y + z - 3
3y = \(\frac{1}{2}\) - 3
3y = \(-2\frac{1}{2}\)
y = \(-\frac{5}{6}\)
Thay x = \(-\frac{1}{2}\) và y = \(-\frac{5}{6}\) vào x + y + z = \(\frac{1}{2}\) ta được:
\(-\frac{1}{2}-\frac{5}{6}+z=\frac{1}{2}\)
\(z=\frac{1}{2}+\frac{1}{2}+\frac{5}{6}\)
\(z=1\frac{5}{6}\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)-\left(2+3-5\right)}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\cdot\frac{x}{y+z-2}=\frac{1}{2}\)
\(\Rightarrow2x=y+z-2\)
\(3x=\left(x+y+z\right)-2=\frac{1}{2}-2=-\frac{1}{2}\)
\(x=-\frac{1}{2}:3=-\frac{1}{6}\)
\(\cdot\frac{y}{z+x-3}=\frac{1}{2}\)
\(\Rightarrow2y=x+z-3\)
\(3y=\left(x+y+z\right)-3=\frac{1}{2}-3=-\frac{5}{6}\)
\(y=-\frac{5}{6}:3=-\frac{5}{18}\)
Ta có:
\(x+y+z=\frac{1}{2}\)
\(\left(-\frac{1}{6}\right)+\left(-\frac{5}{18}\right)+z=\frac{1}{2}\)
\(z-\frac{8}{18}=\frac{9}{18}\)
\(\Rightarrow z=\frac{17}{18}\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Ta có: \(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=x+y+z\)
TH1: \(x+y+z=0\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{x+y+z}{x+y-3+y+z+1+z+x+2}\)
\(=\frac{x+y+z}{x+y+y+z+z+x}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow x+y=\frac{1}{2}-z\)
\(y+z=\frac{1}{2}-x\)
\(z+x=\frac{1}{2}-y\)
Thay \(x+y-3=\frac{1}{2}-z-3\)
\(\Rightarrow\frac{z}{\frac{1}{2}-z+3}=\frac{1}{2}\)
\(\Rightarrow2z=\frac{1}{2}-z-3\)
\(\Rightarrow2z+z=\frac{1}{2}-3\)
\(\Rightarrow3z=-\frac{5}{2}\Rightarrow z=-\frac{5}{6}\)
Thay \(y+z+1=\frac{1}{2}-x+1\)
\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\)
\(\Rightarrow2x=\frac{1}{2}-x+1\)
\(\Rightarrow2x+x=\frac{1}{2}+1\)
\(\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(z+x+2=\frac{1}{2}-y+2\)
\(\Rightarrow\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2}\)
\(\Rightarrow2y=\frac{1}{2}-y+2\)
\(\Rightarrow2y+y=\frac{1}{2}+2\)
\(\Rightarrow3y=\frac{5}{2}\Rightarrow y=\frac{5}{6}\)
Ta có: \(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)
\(=\left(\frac{1}{2}+\frac{5}{6}+-\frac{5}{6}-\frac{3}{2}\right)^{2019}\)
\(=\left[\left(\frac{1}{2}-\frac{3}{2}\right)+\left(-\frac{5}{6}+\frac{5}{6}\right)\right]^{2019}\)
\(=\left(-1\right)^{2019}=-1\)
TH2: x + y + z = 0
\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=0\)
\(\Rightarrow x=y=z=0\)
\(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)
\(=\left(0-\frac{3}{2}\right)^{2019}=\left(-\frac{3}{2}\right)^{2019}\)
Ah! Mk nhầm chút. TH1 là khác 0 nhé!!!!!!
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(\frac{3x-y+5z}{x+y+3z}=\frac{3.2k-3k+5.5k}{2k+3k+3.5k}=\frac{6k-3k+25k}{2k+3k+15k}=\frac{28k}{21k}=\frac{4}{3}\)
Kb với minh nha!
\(\frac{x+5}{4}=\frac{y+3}{3}=\frac{z+1}{2}\), áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x+5}{4}=\frac{y+3}{3}=\frac{z+1}{2}=\frac{x+5+y+3+z+1}{4+3+2}=\frac{11}{9}\)
rồi tính x,y,z và cho vào M nhé
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y-z}{2-3-5}=\frac{2}{-6}=-\frac{1}{3}\)
\(\Rightarrow\begin{cases}x=-\frac{2}{3}\\y=-1\\z=-\frac{5}{3}\end{cases}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y-z}{2-3-5}=\frac{2}{-6}=-\frac{1}{3}\)
+) \(\frac{x}{2}=\frac{-1}{3}\Rightarrow x=\frac{-2}{3}\)
+) \(\frac{y}{3}=\frac{-1}{3}\Rightarrow y=-1\)
+) \(\frac{z}{5}=\frac{-1}{3}\Rightarrow z=\frac{-5}{3}\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{-2}{3};-1;\frac{-5}{3}\right)\)