K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

P = \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}-3=y.\frac{y}{x+y}+z.\frac{z}{y+z}+x.\frac{x}{z+x}-3\)

\(=y.\left(\frac{y}{x+y}-1+1\right)+z\left(\frac{z}{y+z}-1+1\right)+x\left(\frac{x}{z+x}-1+1\right)-3\)

\(=y\left(\frac{-x}{x+y}+1\right)+z\left(\frac{-y}{y+z}+1\right)+x\left(\frac{-z}{x+z}+1\right)-3\)

\(=x+y+z-\left(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{xz}{z+x}\right)-3\)

Lại có \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2017\)

\(\Rightarrow x.\frac{x}{x+y}+y.\frac{y}{y+z}+z.\frac{z}{z+x}=2017\)

=> \(x\left(\frac{x}{x+y}-1+1\right)+y\left(\frac{y}{y+z}-1+1\right)+z\left(\frac{z}{z+x}-1+1\right)=2017\)

=> \(x\left(\frac{-y}{x+y}+1\right)+y\left(\frac{-z}{y+z}+1\right)+z\left(\frac{-x}{x+z}+1\right)=2017\)

=> \(x+y+z-\left(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{zx}{z+x}\right)=2017\)

Khi đó P = 2017 - 3 = 2014

27 tháng 12 2016

Câu trả lời là thiếu dự kiện

24 tháng 3 2019

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)

\(\Rightarrow\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{x+z}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

\(\Rightarrow M=2019+0=2019\)

5 tháng 12 2019

Ta có : \(x+y+z=0\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)

\(\Rightarrow x^2+y^2=z^2-2xy\)

Tương tự ta có : \(y^2+z^2=x^2-2yz\)

\(x^2+z^2=y^2-2xz\)

Thay vào biểu thức ta có :

\(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{x^2+z^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)

\(=\frac{x^2}{x^2-2yz-x^2}+\frac{y^2}{y^2-2xz-y}+\frac{z^2}{z^2-2xy-z^2}\)

\(=-\frac{x^2}{2yz}-\frac{y^2}{2xz}-\frac{z^2}{2xy}\)

\(=\frac{-x^3-y^3-z^3}{2xyz}=-\frac{x^3+y^3+z^3}{2xyz}\)

\(=\frac{3xyz}{2xyz}=-\frac{3}{2}\)

Chỗ \(x^3+y^3+z^3=3xyz\)là do \(x+y+z=0\)nhé, bạn cần chứng minh không ?

2 tháng 12 2018

\(x+y+z=0\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\Rightarrow x^2+2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=-2xy\)

Tương tự: \(y^2+z^2-x^2=-2yz,x^2+z^2-y^2=-2xz\)

\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)

\(=\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{x+y+z}{-2xyz}=0\)

7 tháng 11 2018

thay z = -(x+y) , y = -(z+x),... vao

=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0

11 tháng 1 2017

cho =2016 r` còn tính j nx