Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Giả sử ko tồn tại số nào lớn hơn hoặc bằng }\frac{1}{2}\)
\(|\text{ }f\left(0\right)|=|\text{ c}|;|f\left(1\right)|=|a+b+c|;|f\left(-1\right)|=|a-b+c|\)\(\text{khi đó:}-\frac{1}{2}\le c\le\frac{1}{2};-\frac{1}{2}\le a+b+c\le\frac{1}{2};\frac{-1}{2}\le a-b+c\le\frac{1}{2}\)
đến đây đề sai ta chọn a=b=0; c=1/4
Giả sử phương trình f(x) = 0 có nghiệm nguyên x = a. Khi đó f(x) = (x - a).g(x)
Vậy thì f(0) = -a.g(x) ; f(1) = (1 - a).g(x) ; f(2) = (2 - a).g(x); f(3) = (3 - a).g(x) ; f(4) = (4 - a).g(x) ;
Suy ra f(0).f(1).f(2).f(3).f(4) = -a.(1-a)(2-a)(3-a)(4-a).g5(x)
VT không chia hết cho 5 nhưng VP lại chia hết cho 5 (Vì -a.(1-a)(2-a)(3-a)(4-a) là tích 5 số nguyên liên tiếp nên chia hết cho 5)
Vậy giả sử vô lý hay phương trình f(x) = 0 không có nghiệm nguyên.